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Abstract— Grasp planning based on perceived sensor data of
an object can be performed in different ways, depending on the
chosen semantic interpretation of the sensed data. For example,
if the object can be recognized and a complete 3D model is
available, a different planning tool can be selected compared to
the situation in which only the raw sensed data, such as a single
point cloud, is available. Instead of choosing between these
options, we present a framework that combines them, aiming to
find consensus on how the object should be grasped by using the
information from each object representation according to their
confidence levels. We show that this method is robust to common
errors in perception, such as incorrect object recognition, while
also taking into account potential grasp execution errors due
to imperfect robot calibration. We illustrate this method on the
PR2 robot by grasping objects common in human environments.

I. INTRODUCTION AND RELATED WORK

Robots operating in human settings must often make
sense of an uncertain environment. In particular, grasping
and manipulation tasks can be affected by both perception
uncertainty (such as incomplete data due to occlusions or
incorrect object segmentation and recognition) and execution
errors (such as imperfect trajectory following during arm mo-
tion). Grasp planning algorithms aim to increase reliability in
unknown scenarios by producing grasps able to resist a wide
range of disturbances, for example, using well-established
quality metrics based on either the Grasp or Task Wrench
Space [10], [4]. However, this type of analysis does not
handle potential errors such as the ones mentioned above,
that affect the grasp planning and execution process itself.

The uncertainty inherent in unstructured environments
also means that different perception algorithms can provide
different interpretations of the same scene. For example,
object recognition algorithms often return a list of possi-
ble results, each associated with a numerical measure of
confidence, rather than a single result with 100% certainty.
Different grasp planning algorithms, using different data
representations, will have their own view of how an object
can be grasped.

By combining this data in a common framework, we
can take advantage of multiple sources of information, and
produce algorithms better suited for handling uncertainty.
In this paper, we use the results from multiple grasp plan-
ning approaches, running on different types of input data,
in a way that is agnostic to the inner workings of each
algorithm. In order to allow this exchange of information
between algorithms that are intrinsically different, we use
experimental data to map raw results from each algorithm to
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success probabilities, which allows us to combine different
components in a single framework. We also propose a
method of using pre-computed grasp information to replace
expensive run-time computations when estimating how likely
a grasp is to succeed, applicable to planners that can run off-
line on a database on known models.

In addition to the uncertainty associated with sensor data,
grasp execution is also affected by potential calibration errors
between the sensors and the end-effector. This type of error
can be mitigated, for example, through extensive calibration
or controller tuning, but rarely eliminated altogether. We
attempt to handle this case by extending our measure of
confidence in the success of each grasp to also take into
account the range of possible outcomes for the respective
execution commands.

There is a long history of work that deals with the
problem of planning robot motions and manipulation tasks
under uncertainty, starting with preimage backchaining [18].
More recently, Berenson et al. [2] used Task Space Regions
(TSRs) to generate manipulator trajectories that satisfy the
requirements of a task despite robot pose uncertainty. Hsiao
et al. [13] used a belief-based representation of object pose
to plan actions to robustly execute specific grasps of known
object shapes. Saxena et al. [23] used a probabilistic classifier
to generate grasps and to predict their probability of success
given features of an image and a point cloud of the object.
Glover et al. used a probabilistic representation of 2-D shape
to recognize and complete object outlines in an image for
grasping. Finally, Balasubramanian et al. [1] examined how
to improve the robustness of grasps using grasp measures
derived from human-guided grasp demonstrations.

A database-driven grasp planning approach, including
grasp evaluation across multiple objects of similar shapes,
was recently discussed by Goldfeder et al. [11]. De Granville
et. al. [8] also used mixtures of Gaussians over grasp posi-
tion and orientation to represent functionally different grasp
affordances, based on a database of human-demonstrated
grasps; Detry et al. [9] represented grasp densities using a
nonparametric kernel representation over grasp position and
orientation, refined through robot grasp experiments.

II. OBJECT REPRESENTATIONS AND COLLABORATIVE
GRASP PLANNERS

Consider the problem of a robot attempting to execute a
grasp based on a perceived sensor image of the target object.
In this study, we use a stereo camera equipped with a textured
light projector to provide point clouds of the environment,
although the framework that we will present is naturally
extendable to other types of sensors. We also assume here



(a) (b) (c) (d) (e)

Fig. 1: Challenges in sensing for manipulation. (a) An object to be grasped, as well the recorded point cloud. (b)-(d)
Different object representations for grasping, and their corresponding planned grasps. These include a planner based only on
the point cluster (b), and two results of the recognition algorithm, one incorrect (c) and one correct (d). (e) All representations
superimposed, along with a set of grasps combining information from all of them.

that the segmentation problem is solved (i.e. the object is
separated from the background). As in previous work [12],
we use planar segmentation and Euclidian clustering to
separate the objects from a planar support surface, as well as
each other. Fig. 1(a) shows an example of the raw perceived
data of an object, as well as the segmentation result. Notice
that due to (self-) occlusions, noise, and other imperfections
of the point cloud, the original object (in this case a wine
glass) is barely recognizable to a human operator. This point
cloud is the starting point of the grasp planning algorithm.

A. Object Representations

One possible method for performing the grasp is to attempt
to recognize the object from a database of known models,
and simply use a pre-computed grasp for the recognized
model. This approach is discussed in [11]. In this study,
we use the implementation presented in [7], relying on the
model database described in [6]. This method, which we
refer to as database-driven planning, has the advantage of
reasoning about the complete object shape and choosing
grasps accordingly. In addition, planning can be performed
off-line on all models in the database, saving significant
computational cost at run-time. However, database-driven
planning only works on objects that can at least be reasonably
approximated by models in the database, and is critically
affected by the quality of the model recognition algorithm.

To illustrate the importance of correct object recognition,
Fig. 1(c)(d) shows part of the result of our algorithm applied
to the point cloud of Fig. 1(a). Note that the first result
(a tennis ball can) is incorrect, even though it matches the
observed part of the glass quite well. The correct model, and
other similar objects, can be found further down in the list

of recognition results. Intuitively, it seems that the results of
the recognition algorithm contain at least some useful data,
but a naive planning algorithm using only the first result (the
tennis ball can) has a significant chance of failure.

If object recognition can not be fully trusted, a natural
alternative is to select a grasp based strictly on the segmented
point cloud, without attempting to identify the object, as
shown in Fig. 1(b). Note that, in the rest of the paper, we
will refer to the segmented point cloud of an object as a
point cluster, or simply a cluster, in order to distinguish it
from complete point clouds of an entire scene. Examples
of cluster-based planning approaches can be found in [15]
and also in [12]; the latter implementation is also used in this
study. This approach has the advantage of being applicable in
a wide range of situations, as it only requires segmentation of
the target object (as described above). However, it is naturally
limited by only having a partial view of the object to work
with.

Generalizing from the two concrete cases presented above,
we notice that different grasp planners often use different
representations of the target object. For database-driven
grasping, any model returned by a recognition algorithm can
be considered a representation of the underlying sensor data;
for cluster-based planning, the representation is the point
cluster itself. Based on how well the given representation fits
the object, and also on the intrinsic planning algorithm, the
resulting grasps will be more or less likely to succeed when
executed on the real object. In our formulation, each object
representation is associated with a grasp planning algorithm
that uses that particular method of interpreting the data.

In this study, we rely on the two representations discussed
above for our implementations and results. We also note that



other object representations for grasping have been proposed
in the literature. One example is to represent the object data
using primitive shapes (such as boxes, spheres or cylinders)
as in [14], [22], and attempt to plan grasps based on the
primitives [19], [14] . Representations can also use different
sensors, as in [23] where grasping is based directly on a
monocular image of a scene. While these methods are not
(yet) used in our framework, some of them are natural
extensions and their inclusion is the subject of future work.

B. Multi-planner Framework

For a given sensor view of an object, we refer to our
set of possible representations as R, with an individual
representation denoted as r ∈ R. Furthermore, for any
representation we define a confidence function C(r|o), which
encodes how confident the representation r is in its ability to
predict whether grasps will succeed, based on the observed
data o (we will expand on this topic in later sections).

We refer to a grasp that can be executed by the robot
as g. In our study, we apply this formulation to a robot
equipped with a simple parallel gripper. In this case g ∈ R6,
simply encodes the pose (position and orientation) of the
gripper relative to the target object. As in the case of object
recognition, we define an estimate on the confidence that we
will succeed at grasping (denoted s), given a particular grasp
g and observed data o, as:

C(s|g, o) =
∑
r∈R

C(r|o)C(s|g, r) (1)

Although our confidence values are not intended to accu-
rately reflect real-life probabilities, they are values between
0 and 1 that behave in a similar manner to probabilistic
estimates. Thus, to clarify the exposition, we use proba-
bilistic notation, using for example C(s|g, r) to denote the
confidence in successful execution for grasp g given that
the object representation r accurately represents the true
geometry of the object (this quantity is independent of the
data o, given the representation r).

The intuition behind this formulation is that a grasp is
more likely to succeed in the real world if multiple object
representations that are trying to explain the sensor data
agree that the grasp would succeed if their representation
accurately represented the true object shape. Furthermore,
object representations that better fit the observed data should
have more influence in deciding which grasps should be
executed.

In order for a set of representations R to be used in this
framework, the following requirements have to be met:
• at least one object representation in R must be able to

propose a set of grasps to be tested, in order to form a
pool of grasps g to be tested according to (1);

• each object representation must be able to test a possible
grasp, i.e., for each representation r ∈ R, we must
have a way of computing C(s|g, r) for any given g.
In the next section we will also propose a method
for fast approximation of this term using off-line pre-
computation, applicable for database-driven planning.

The aim of this framework is to allow different object
representations (and the associated planning algorithms) to
reinforce each other, mitigating the risk of failure due to
incorrect scene interpretation, as illustrated in Fig. 1(e).
When using database-driven grasping (where we each possi-
ble recognition result is considered an independent represen-
tation), our framework encourages the selection of a grasp
that would work well on a family of objects. The goal is
to abstract away from the particular features of one object,
unless the recognition algorithm is extremely confident in its
result.

III. DATA-DRIVEN REGRESSION

In this section, we propose a method for evaluating a grasp
g on a given object representation r indirectly, based on
how well it matches other grasps that are available for r.
If we assume that gr ∈ Gr form a set of grasps for which
C(s|gr, r) is known, we would like to evaluate g based on
how well it matches the grasps in Gr.

Recall that, in our implementation, the definition g of a
grasp encodes the position and orientation of the gripper.
Intuitively, two grasps are similar if they define two gripper
poses that are close to each other in a Euclidian sense. We
use the function Ng,σb(gr) to denote the similarity between
two grasps, g and gr. We assume that the position and
orientation of the grasp are independent, and so N is the
product of a normal distribution applied to the Euclidean
distance between the position components of the grasps, and
a Dimroth-Watson distribution applied to the shortest rotation
angle between the angular components, as in [8], [9]. σb,
which we will refer to as the grasp bandwidth, is a tunable
parameter, defining the size of a region around itself that a
given grasp informs. In this study, the positional component
of the bandwidth has a standard deviation of 0.01 m, and the
orientation component has a Dimroth-Watson concentration
parameter corresponding to a standard deviation of 26◦.

Using this framework, we compute a Locally Weighted
Linear Regression L(g, r) over the confidence level of the
grasps in Gr as

L(g, r) =

∑
gr∈Gr

C(s|gr, r)Ng,σb(gr)∑
gr∈Gr

Ng,σb(gr)
(2)

and use it to estimate the confidence level of a new grasp g:

C(s|g, r) = min

(
L(g, r),

C(s|g∗r , r)Ng,σb(g∗r )

)
(3)

where g∗r is the grasp in Gr that is most similar to the
evaluated grasp g.

The purpose of this evaluation is to combine the informa-
tion from multiple grasps in Gr in the same region of space,
while limiting the region of influence of each grasp to an area
defined by the bandwidth parameter σb. Other approaches
also exist for the problem of learning continuous grasp
quality functions from a discrete number of samples [17],
[21]. However, we assume that regions with no grasps encode
negative information; that is, a grasp in an empty region
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Fig. 2: Illustration of the data-driven regression function. The
black circles represent known grasps from Gr, while the
green bell curves show the value of a similarity function N
centered at each grasp. The regression function (thick blue
line) is informed by (the weighted average of) the closest
grasp(s).

is likely to fail, and thus as we move away from known
grasps, our confidence function drops off with distance. For
illustration, a 1D toy example is presented in Fig. 2.

This function can be thought of as defining a continuous
measure of grasp success over a region of space using a set
of discrete samples. It is important to note, however, that
this version closely approximates explicit grasp evaluation
only if the set Gr fully samples the space of good grasps for
r, with a density comparable to the value of the bandwidth
parameter. It is well-suited for cases where an extensive set
Gr can be computed off-line, as in the case of database-
driven grasping.

IV. IMPLEMENTATION

In this section, we describe the implementation of the
framework presented above using two object representations,
one of them relying on recognized object models and the
other using the object point cluster. The hardware used for
implementation is the PR2 personal robot. The features of the
PR2 most relevant for this study include two 7-DOF arms,
allowing multiple ways of achieving a desired grasp pose,
and a narrow-field-of-view stereo camera equipped with a
texture projector, providing dense point clouds of the robot’s
workspace (as illustrated in Fig. 1). Each arm is equipped
with a parallel jaw gripper, which is the end-effector used for
the implementation of the methods presented in this study.

A. Object Recognition

Object recognition is an extremely active field of research
in its own right; the question of which algorithm (or even
which type of sensor data) is currently best suited for
grasping applications is beyond the scope of this study. In
order to provide an implementation of our framework, we
used a simple matching algorithm to seed the database-driven
component. Once an object point cluster is segmented, an
iterative technique similar to ICP [3] attempts to match the
cluster against each 3D model in our database.
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Fig. 3: Conversion from raw object recognition scores to
the estimated confidence in the recognition result. Blue line
shows ground truth data while the black line shown the
analytical model used to approximate it.

The current matching algorithm only operates in 2 dimen-
sions, and thus can only recognize objects sitting upright on a
tabletop, either rotationally symmetrical or sitting in a known
orientation. Furthermore, it only evaluates how well the
points in a cluster match a given model, without reasoning
about negative (or the absence of) sensed data. As a result,
small point clusters will be considered excellent matches for
large database objects, even if they only explain a small part
of the mesh. We believe that such limitations underscore the
importance of robust grasp planning. One of the strengths of
the framework presented here is also its ability to integrate
data from multiple sources. As more general and more
reliable object recognition algorithms become available, they
should directly benefit this approach to grasp planning.

One aspect which requires further attention is the output
of a recognition algorithm, or its confidence level. In gen-
eral, different recognition algorithms use different internal
quality metrics; our approach returns the quality of the
match between the point cluster and a 3D model as the
average distance between the points in the cluster and their
closest counterpart on the mesh. In order to combine such
information from multiple algorithms, these raw results must
be translated into correct-detection probabilities.

To perform this translation for our detector, we employed a
data-driven method that has the advantage of being agnostic
to the inner workings of the recognition algorithm. We
collected raw recognition results on a set of 892 point clouds
from 44 objects. For a raw score falling in each of 25
discrete intervals, we computed the ratio of correct results
(object model correctly identified; we assume that the pose
is approximately correct if the model is correct for this
detector) vs. total recognition attempts. Fig. 3 shows this
data, superimposed with the analytical model derived from
it. This model is used in the rest of the paper to map raw
recognition scores to probabilities of correct detection.

B. Database-driven Planning

For computing and evaluating grasps on 3D meshes con-
tained in our database of models, we used the publicly



Fig. 4: Database-driven grasp planning: the object model, an
example grasp and the complete set of computed grasps.

available GraspIt! [20] simulator. To evaluate the quality of
a given grasp, and to plan new grasps for an object, we used
the energy metric and simulated annealing search described
in [5]. An example is shown in Fig. 4.

As previously noted, an object representation should ide-
ally both generate its own list of grasps and test grasps
generated using other representations. Testing a novel grasp
on a known 3D model can be performed explicitly inside
the simulator. However, this test, performed at run-time,
is computationally expensive (on the order of 100 ms per
grasp). The alternative is to use the regression method
presented in Sec. III, where the set of known grasps Gr
can be precomputed off-line. Fig. 4 also shows a complete
set of reference grasps pre-computed for a given object. The
precomputation time for generating grasps was 4 hours per
object, and resulted in an average of 539 grasps for each
model in the database.

As in the case of object recognition, in order to combine
multiple grasp planners under a single framework, we must
make the conversion from individual grasp quality metrics to
a value comparable among different grasp evaluators–in this
case, the probability of grasp success. Again, to provide an
analytical model for this conversion, we used a data-driven
approach, where 490 grasps generated using GraspIt! were
executed on the real robot, in order to compare the planner’s
quality metric against real-life execution results. Fig. 5 shows
the resulting data, as well the analytical model used to map
a raw score to a grasp success confidence value (C(s|g, r)).
C. Robustness to Execution Errors

To account for possible errors in grasp execution (due to
imperfect robot calibration or trajectory following), we have
extended the quality metric presented above for database-
driven planning to also consider a range of possible outcomes
for a commanded grasp. Specifically, the quality of a grasp
g is determined by evaluating the quality metric not only for
g, but also for a set of grasps gp ∈ Gp(g) that we refer to as
the perturbations of g, or grasps that are possible outcomes
when the command for executing g is sent to the robot.

In general, an estimate on the confidence in the success
of a grasp g can be computed, taking into account possible
execution errors, as

C(s|g, r) =
∑

gp∈Gp(g)

C(s|gp, r)P (gp|g) (4)
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Fig. 5: Conversion from GraspIt!’s grasp quality metric to
experimental grasp success percentages. Blue lines show
ground truth data; the black line shows the analytical model
used to approximate it. Blue error bars indicate 95% confi-
dence on the mean, computed using bootstrap sampling.

where P (gp|g), an error model encoding the probability of
actually executing grasp gp when g is intended (normalized
over our samples to sum to 1), depends on the calibration
of the robot. In this study, we built a simple error model
by independently sampling one perturbation each along the
positive and negative directions of the X , Y and Z axes
for the position component of a grasp g. Each of the 6
perturbations was assigned a weight P (gp|g) = 1/9, with
P (g|g) = 3/9 (correctly executing grasp g when g was
intended) completing the model. This model is equivalent to
performing an unscented transformation over (X,Y, Z) with
a center point weight W (0) = 1/3 and standard deviation
σ = 0.47cm [16].

D. Cluster-based Planning

The second object representation used in this paper relies
solely on the observed point cloud of an object. As a result,
it is applicable in a wide range of scenarios, as it does
not depend on other components such as a model database,
recognition algorithm, or primitive fitter.

For this object representation, we used the grasp evaluation
and planning algorithms presented in detail in [12]. This
planner uses a set of heuristics, such as hand alignment with
the cluster bounding box, size of the bounding box compared
to gripper aperture, and number of observed points that fit
inside the gripper, to assess the quality of grasp, and also to
populate a list of grasp candidates. As in the previous case,
grasps planned using other representations can be evaluated
by the cluster-based planner either explicitly or by using the
regression method of Sec. III.

E. Combining Object Representations

As the cluster-based representation is used in the same
framework as the object-recognition-based approach, the rel-
ative confidence levels used for both representations requires
further attention. We recall from Eq. 1 that the information
from each object representation r (and associated grasp



Fig. 6: The set of test objects used in this study.

planner) is weighted by the confidence function C(r|o) for
that representation, based on the observed data o.

In this study, we are combining the cluster representation,
which we will denote by rc, with n model detection results,
which we will denote by rid for i ∈ 1, ..n. Each recognition
result rid has an associated probability of correct model
detection (computed from the raw detection score as in
Sec. IV-A), which we will refer to as P (rid|o). An additional
normalization step is used to ensure that the absolute number
of recognition results does not affect the final result, and
only their relative confidence levels do. We use the following
methods for computing the associated confidence levels:

C(rc|o) = 1−maxk
(
P (rkd |o)

)
(5)

C(rid|o) =
P (rid|o)∑

j=1..n P (r
j
d|o)

maxk
(
P (rkd |o)

)
(6)

The best recognition result, maxk
(
P (rkd |o)

)
, is thus used as

an overall measure for the relative weights of the cluster-
based and recognition-based representations. This formu-
lation allows us to combine grasp evaluations from both
types of representations in a continuous fashion, with object
representations ranging from extremely confident in their
representation of the actual object geometry (and thus in
their grasp predictions) to only informative and finally to
contributing no useful information. We note that, while we
have found this formulation to be well suited in practice for
this particular case, it is arbitrary in nature, and it might not
be directly compatible with other potential object detection
results or object representations. Such extensions are the
focus of current work.

V. EXPERIMENTAL RESULTS AND ANALYSIS

We now have implementations available for all the compo-
nents of the framework of Eq. 1, with the additional option
of using the regression-based evaluator of Eq. 3. Our test
set, shown in Fig. 6, consisted of 25 objects common in
human environments, such as dinnerware and containers of
various shapes. The models of these objects were all part
of the database used for object detection. The database also
contained 45 additional models that, while not part of our
real-life test set, were included in the detection results and
used by the database-driven grasp planning component.

In order to analyze robustness to detection errors, we also
performed tests where each object was temporarily removed
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Fig. 7: Comparison of collaborative (green markers) and
naive (red markers) grasp planners.

from our model database, to simulate grasping non-database
objects while retaining knowledge of actual object pose and
shape for ground-truth evaluation. We refer to this condition
as novel-object testing. We note that for objects belonging
to a class well-represented in our set (such as cylinders), a
similar but non-identical object was often available.

In addition to real-life testing on the PR2 robot, we
tested the results of the planner in simulation, using GraspIt!
to evaluate the planned grasps. All the tests were run on
real-life point clouds of the objects acquired with the PR2
robot’s stereo cameras. For the simulated tests we used
recorded real-life sensor data as input, manually annotated
with ground truth information for object identity and pose.

For both object representations discussed in this study, we
had the option of using explicit computation of the grasp
confidence term, or the data-driven regression of Sec. III.
The following options were tested:
• for cluster-based planning, we used explicit grasp eval-

uation for the simulated results and regression-based
evaluation on the real robot.

• for database-driven planning, we used regression-based
evaluation based on the pre-computed set of grasps for
each object stored in our database.

The collaborative grasp planner requires an average of 3.2s
run-time per object on a standard desktop computer, with an
additional 2.3s when using explicit cluster-based evaluation.

A. Simulation-based Planner Evaluation

A typical test of the grasp planner on one of the objects
in our set used a recorded point cloud of the object sitting
alone on a table as input to the planner, then used the
simulation engine to test all the returned grasps. Each grasp
was evaluated in simulation on the ground-truth object model
and location, and its quality metric and ground-truth success
probability were evaluated as described in Sec. IV-B. The
ground-truth success probability was then compared against
the confidence estimated by the planner. It is important to
note that, while the planner could only see a single point
cloud of the object (similar to run-time conditions on the
robot), the final ground-truth testing of the planned grasps



0.0 0.2 0.4 0.6 0.8 1.0

Threshold on Estimated Confidence C(s|g, o)

0.80

0.85

0.90

0.95

1.00
F
ra

ct
io

n
o
f

re
su

lt
in

g
g
ra

sp
s

w
it

h
p(
s)
≥
α

α = 0.5

α = 0.6

α = 0.7

α = 0.8

α = 0.9

Fig. 8: Choosing a confidence threshold. For each value of
the planner-estimated confidence used as a threshold, the plot
shows percentage of resulting grasps that exceed a value t
for the ground-truth evaluated probability.

in simulation was performed against a complete object model
placed at the correct location in the world.

As a first benchmark, we compared the collaborative
planner against a version which assumes that the best result
from the recognition algorithm is correct, and simply returns
all the grasps pre-computed for that particular model whose
quality metrics indicate a probability of success greater than
90%. We refer to this version as the naive planner. Fig. 7
shows the result of this comparison by plotting, for all the
grasps returned by the two planners, the confidence level
estimated by the planner vs. the results of ground-truth
simulation testing, for both the novel-object case as well as
the case where the tested objects are in the database.

The first thing we note is that all the grasps returned by the
naive planner have very high estimated confidence. Indeed,
since the naive planner is 100% confident in the result of the
detection, and only returns grasps that have more than 90%
success on the detected model, it will be highly confident
in its results. However, due to errors in object detection,
a significant number of those grasps will fail ground-truth
testing. In contrast, the collaborative planner is more cautious
in its returned results, and succeeds in eliminating a large part
of the grasps that would ultimately fail.

It is important to note that the confidence level estimated
by the collaborative planner can at best be considered a
conservative estimate of the probability of success of a grasp,
a fact also reflected in the results shown in Fig. 7. In practice,
we have found that a common use case is where a user asks
the following question: if I want to choose a grasp with a high
probability of success, is there a threshold on the planner-
estimated confidence level that I can use? Fig. 8 shows how
choosing a threshold for the planner-estimated confidence
level (horizontal axis) can insure that a high percentage of the
resulting grasps (vertical axis) exceeds a desired probability
of success in execution, as evaluated in simulation testing
based on ground-truth object identity and pose.

Fig. 9 uses the same format for a more exhaustive com-
parison of the collaborative and naive planners, shown with
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Fig. 9: Comparison of different grasp planners based on per-
centage of returned grasps that exceed an evaluated success
probability of 0.8.

a cutoff threshold of 0.6. We performed the following tests:

• Database vs. novel-object detection. As expected, the
naive planner behaves significantly worse under the
novel-object condition. However, the collaborative plan-
ner is able to use information from the cluster planner
and similar, but non-identical objects in the database,
and so the drop in performance is minimal.

• In order to test the data-driven regression of Sec. III,
we also ran the collaborative planner using the explicit
GraspIt!-backed grasp evaluator throughout its opera-
tion. This test required significant computational effort,
with the planner spending approximately 10 minutes
per object. The results obtained when using data-driven
regression are quite similar (as desired), but require far
less run-time computation.

B. Grasp Results on the PR2 Robot

Real-life testing of the collaborative framework presented
here was carried out using the PR2 robot on 25 objects,
shown in Fig. 6. Each object was placed alone on a table
within reach of the PR2, and object detection based on the
stereo point cloud was done as in Section IV-A. The grasps
returned by the planner were subjected to additional testing
for situation-specific constraints (such as a feasible Inverse
Kinematics solution and a collision-free arm path for placing
the gripper in the desired grasp position). The grasps were
tested in decreasing order of estimated confidence; once a
grasp was deemed feasible, it was executed by the robot.
Success was defined as successfully grasping the object,
lifting it off the table and moving it to the side of the robot
without dropping it. The same object and pose test set were
used for both naive and collaborative planners.



As before, tests were performed with both database and
novel-object detection. For both cases, we compared the
performance of the collaborative planner against the naive
planner, with the results shown in Table I. We notice that
the collaborative planner has the most significant impact in
the case of novel-object testing (improving from 72% to 88%
success rate), while also showing a smaller improvement in
the case of database objects (from 84% to 88%).

VI. CONCLUSIONS AND FUTURE WORK

We have presented a collaborative approach to grasp
planning based on the observation that real-life sensed data
of an object is often incomplete and noisy, allowing for
multiple interpretations of a scene. The different ways to
interpret object data suggest different approaches to the
grasp planning problem. Our framework attempts to combine
these approaches and look for consensus among them, thus
choosing final solutions (grasps) that are robust to errors in
perception and sensor data processing.

In particular, the implementation that we have presented
uses information from multiple results from an object recog-
nition algorithm, attempting to find grasps that work on
several of them, weighted by their relative confidences. This
component is complemented by a grasp planner using an
altogether different object representation, consisting only of
the observed point cluster. The overall system can handle
situations ranging from completely unknown objects to con-
fidently recognized models in a consistent way.

For the case of database-driven grasp planning (or any ob-
ject representation where grasp evaluation is computationally
expensive, but can be performed off-line), we have also used
a data-driven regression method that evaluates the confidence
in the success of a grasp based on pre-computed data. Our
results show that this method can draw on data generated
off-line to enable fast on-line execution, without a noticeable
decrease in performance.

One of the main advantages of the framework we propose
is robustness to errors in the underlying object analysis. The
results shown here were obtained with a simple approach to
object recognition and using a limited database of models.
In future work, we would like to investigate the performance
levels that can be achieved using state-of-the-art recognition
algorithms, as well as an extensive model set.

It is interesting to consider the underlying reasons that
a grasp has a low estimated confidence level. While these
do not make an immediate difference (a bad grasp should
not be executed regardless of why it is bad), they can
help inform a higher-level behavioral planner. If the robot
is not confident in its ability to grasp an object because
of incomplete data, it can attempt to collect more sensor
data. If, however, the object itself affords no good grasps
with our current algorithms, then a different task should
be attempted. Making this distinction will require more in-
depth analysis of the interplay between detection confidence,
object representations, and grasp quality. Finally, the current
implementation is targeted for a simple robotic hand, which
adds no intrinsic degrees of freedom to the grasp planning

coll. planner naive planner

novel-object 22/25 18/25
database object 22/25 21/25

TABLE I: Number of objects successfully grasped and lifted
on the PR2 robot.

problem. More dexterous hands will require a better notion
of what it means for two grasps to be “similar”. Both of
these topics are the subject of future work.
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