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Abstract— We present a Bayesian framework for grasp plan-
ning that takes into account uncertainty in object shape or pose,
as well as robot motion error. When trying to grasp objects
based on noisy sensor data, a common problem is errors in
perception, which cause the geometry or pose of the object
to be uncertain. For each hypothesis about the geometry or
pose of the object to be grasped, different sets of grasps can
be planned. Of the resulting grasps, some are likely to work
only if particular hypotheses are true, but some may work
on most or even all hypotheses. Likewise, some grasps are
easily broken by small errors in robot motion, but other grasps
are robust to such errors. Our probabilistic framework takes
into account all of these factors while trying to estimate the
overall probability of success of each grasp, allowing us to
select grasps that are robust to incorrect object recognition
as well as motion error due to imperfect robot calibration. We
demonstrate our framework while using the PR2 robot to grasp
common household objects.

I. INTRODUCTION AND RELATED WORK

Robots trying to operate in human environments have
to contend with many types of uncertainty. In particular,
grasping and manipulation tasks can be affected by both
perception uncertainty (such as incomplete data due to occlu-
sions or incorrect object segmentation and recognition) and
execution errors (such as imperfect trajectory following dur-
ing arm motion). Grasp planning algorithms aim to increase
reliability in unknown scenarios by producing grasps able
to resist a wide range of disturbances, for example, using
well-established quality metrics based on either the Grasp or
Task Wrench Space [9], [4]. However, this type of analysis
does not handle potential errors that, as the ones mentioned
above, affect the grasp planning and execution process itself.

The uncertainty inherent in unstructured environments also
means that different perception and analysis algorithms can
provide different interpretations of the same scene. For ex-
ample, an ideal recognition algorithm would always identify
the correct object with 100% certainty. However, available
methods commonly provide a list of possible results, each
associated with a numerical measure of confidence (with
units specific to the algorithm itself). Primitive fitters provide
a measure of how shape primitives (such as spheres, boxes,
cylinders, etc.) fit a given object. Different grasp planning
algorithms, using different data representations, will have
their own views of how an object can be grasped.

By combining this data in a probabilistic framework, we
can take advantage of multiple sources of information, and
produce algorithms better suited for handling uncertainty. In
this paper, we show how to use the results from multiple
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object detectors and multiple grasp planning approaches,
potentially running on different types of input data, in a
way that is agnostic to the inner workings of each planning
algorithm. We also describe a method of using pre-computed
grasp information to replace expensive run-time computa-
tions when estimating how likely a grasp is to succeed, which
is applicable to planners that can run off-line on a database
on known object models.

In addition to the uncertainty associated with sensor data,
grasp execution is also affected by potential calibration
errors between the sensors and the end-effector, as well
as imperfect following of a desired trajectory by the arm
itself. This type of error can be mitigated, for example,
through extensive calibration or controller tuning, but rarely
eliminated altogether. We attempt to handle this case by
extending the probability of success of each grasp to also
take into account the range of possible outcomes for the
respective execution commands.

II. RELATED WORK

There is a long history of work that deals with the
problem of planning robot motions and manipulation tasks
under uncertainty, starting with preimage backchaining [14].
More recently, Berenson et al. [2] used Task Space Regions
(TSRs) to generate manipulator trajectories that satisfy the
requirements of a task despite robot pose uncertainty. Hsiao
et al. [12] used a belief-based representation of object pose
along with forward search through belief space to robustly
execute specific grasps of known object shapes. Saxena et
al. [16] used a probabilistic classifier to generate grasps and
to predict their probability of success given features of an
image and a point cloud of the object. Glover et al. used
a probabilistic representation of 2-D shape to recognize and
complete object outlines in an image for grasping. Finally,
Balasubramanian et al. [1] examined how to improve the
robustness of grasps using grasp measures derived from
human-guided grasp demonstrations.

A database-driven grasp planning approach, including
grasp evaluation across multiple objects of similar shapes,
was recently discussed by Goldfeder et al. [10]. De Granville
et. al. [7] also used mixtures of Gaussians over grasp posi-
tion and orientation to represent functionally different grasp
affordances, based on a database of human-demonstrated
grasps; Detry et al. [8] represented grasp densities using a
nonparametric kernel representation over grasp position and
orientation, refined through robot grasp experiments.

This paper builds off of [5], which also examined grasp
planning under object shape uncertainty and motion error,
but which combined object recognition and grasp evaluation



results in a more ad-hoc way that was limited to the particular
recognizers and evaluators used; this paper addresses these
limitations and makes the framework general enough to be
used with arbitrary sets of object recognition and grasp
evaluation algorithms.

III. OBJECT REPRESENTATIONS AND PROBABILISTIC
FRAMEWORK

Our general approach can be summarized by Figure 1.
Consider the problem of a robot attempting to execute a
grasp based on a perceived sensor image of a target object,
shown in the top half of 1(a). The sensor image may be, for
instance, a stereo camera point cloud, as in the bottom half
of Figure 1(a). The robot has some set of object detectors
that detect possible objects, (c) and (d), with associated
confidence levels. The raw, segmented point cloud as well as
the object meshes associated with the detected objects can all
be used to plan grasps, as in (d, f, and h). Notice that due to
(self-) occlusions, noise, and other imperfections of the point
cloud, the original object (in this case a wine glass) is barely
recognizable even to a human operator. A naive planning
algorithm using only the first object detection result (the
tennis ball can), or only the raw point cloud, has a significant
chance of failure. Ideally, we would like to select a grasp
that is likely to work on all possible object representations,
weighing the importance of each representation and the
likelihood of success of each grasp appropriately according
to how much we believe each object representation to be
correct, and at the same time, how confident we are that
each grasp will work if its chosen representation is actually
correct.

In order to select grasps in a principled way, we first create
a set of possible grasps to choose from. From there, we
can estimate the probability of success of each grasp, based
on observations from various object detectors that tell us
something about the identity of the object, and from various
grasp evaluators that tell us something about how likely a
grasp is to succeed, taking into account expected levels of
robot motion error.

A. Probabilistic Model of Grasping

Here we present our probabilistic model for the success of
a single grasp, g, which represents the 6D pose of the robot
hand when grasping. We refer to grasp g as having a grasp
success variable S, which has possible values successful (s)
or unsuccessful (f ).

We assume that we have a mutually-exclusive set of
possible object representations for the object we are trying
to grasp, O. These representations can be specific object
geometries (e.g., meshes, point clouds, combinations of
primitives), object poses, combinations of object geometries
and poses, distinct object classes, or any other mutually-
exclusive set of object representations that a set of grasp
evaluators can be found to evaluate grasps on. This set can
be generated for a particular situation from object detection
results, or it can be fixed beforehand.

We also assume that we have some set of object detection
results, D, to tell us something about how likely each object
representation is. These could be results from vision-based
object detectors, or they could be results from detectors based
on other object characteristics such as object weight, texture,
or even likelihood of being in a particular room.

Finally, we assume that we have a set of grasp evaluation
results, E, that each tell us something about how likely g is
to work on each of the possible object representations.

We wish to estimate P (s|E,D), or the probability that
the grasp g will succeed (S = s) based on our grasp
evaluations and object detection results. The actual true
object representation is unknown. However, we can take all
of them into account:

P (s|E,D) =
∑
o∈O

P (o|E,D)P (s|E,D, o) (1)

Intuitively, we expect that P (s|E,D, o) should not depend
on D once given o, the actual object representation. Also,
P (o|E,D) should not depend on E, since for the types
of grasp evaluations we are likely to obtain, a computed
value for how well a grasp works on a hypothetical object
representation should not affect which object representation
we think is actually in front of our robot. Thus:

P (s|E,D) =
∑
o∈O

P (o|D)p(s|E, o) (2)

Using Bayes’ rule:

P (s|E,D) =
∑
o∈O

P (D|o)P (o)
P (D)

P (E|s, o)P (s|o)
P (E|o) (3)

1/P (D) is a normalizing constant (α) that we can determine
by computing both P (s|E,D) and P (f |E,D) and normal-
izing so that they sum to 1; but the other terms must be
computed based on our data and models.

B. Bayesian Network Model

The Bayesian network models shown in Figure 2 com-
pactly represent the independence assumptions that we just
stated; it contains two pieces, each containing the object
representation as a node, because of the constraint that
P (o|E,D) should not depend on E. These models as
drawn add the additional independence assumptions that all
object detections and grasp evaluations are independent of
each other; this need not be the case, but does make the
models much easier to deal with. The result of all of these
independence assumptions is that we effectively compute the
probabilities of each object representation in our set using a
Naive Bayes model, and then use the resulting representation
probabilities to compute the probability of grasp success.

In this instantiation of the model, we have n+1 possible
object representations, O ∈ o1...on, ond, where ond refers to
none of the other object representations being correct.

We have a set of r observed object detection results, D :=
d1...dr, and a set of m observed grasp evaluation results,
E := e1...em for the particular sensor scene and grasp.
We also assume here that we have appropriate priors and
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Fig. 1: Challenges in sensing for manipulation. (a) An object to be grasped, as well the recorded point cloud (b). (c)-(h)
Different object representations for grasping, and grasps planned using each representation. These include grasps planned
based only on the segmented point cluster, and results of object recognizers, one incorrect shown in (e) and one correct shown
in (g), along with the grasps planned using their associated object meshes in (d-h). (i, j) All detected object representations
superimposed, along with a set of grasps that combines information from all of them.

conditional distributions to compute the joint distributions
for any grasp g.

Based on the independence assumptions contained in our
Bayes net model,

P (s|D,E) = α
∑
oi

P (oi)[
∏
dj

P (dj |oi)]P (s|oi)[
∏
ek

P (ek|s, oi)
P (ek|oi)

]

(4)
where 1 ≤ i ≤ n + 1, 1 ≤ j ≤ r, and 1 ≤ k ≤ m.

P (f |D,E) can be computed in a similar fashion, substituting
f for s. P (oi) is a prior over the possible identities of
the object, P (dj |oi) is the conditional probability of having
observed object detection result dj given that the object
representation oi is actually correct, P (s|oi) is a prior on
how often we would expect a grasp such as g to be successful
on object oi, and P (ek|s, oi) is the conditional probability
of having observed grasp evaluation result ek given that the
grasp of object o is of the successful variety.

If the two pieces of Bayes net were combined into one,
the term P (ek|oi) would go away; dividing by this term
removes the influence of the computed grasp evaluations on
the likelihoods of the different object representations. It can
be computed as follows:

P (ek|oi) = P (ek|oi, s)P (s|oi) + P (ek|oi, f)P (f |oi) (5)

All of the above values can be (ideally) estimated from
data on previous grasps and object detection results.

By combining different object detectors and grasp evalua-
tors in this manner, we allow them to reinforce each other’s
results, mitigating the risk of grasp failure due to incorrect

scene interpretation. This encourages the selection of a grasp
that would work well on the entire family of possible object
representations. The goal is to avoid grasping particular
features that belong to just one object representation, unless
the associated recognition algorithm is extremely confident
in its result.

Furthermore, using both success and failure conditional
probabilites ensures that evaluators contribute to the final
grasp success estimate with weights commensurate with their
discriminative power; a weak evaluator can still add infor-
mation without overly swaying the resulting grasp success
probability.

In order for a set of object detectors, grasp planners, and
grasp evaluators to be used in this framework, the following
requirements have to be met:

• each object detector must be able to give an estimate
of its confidence in detecting at least one object repre-
sentation oi ∈ O, and must also be able to estimate
(ideally based on actual detection data) conditional
probabilities for how likely it is that it would state
that level of confidence given that each possible object
representation is correct in turn (P (di|O));

• at least one grasp planner must be able to propose a set
of potential grasps, in order to form a pool of grasps g
to be evaluated;

• each grasp evaluator must be able to test a possible
grasp, i.e., using at least one representation o ∈ O, must
be able to generate a numerical evaluation of how well
that grasp will do given that the object representation is
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Fig. 2: The models used to estimate the probability of grasp
success (S = s) for a single candidate grasp g, given r
different results from object detectors (dj , 1 ≤ j ≤ r)
and m different grasp evaluators (ek, 1 ≤ k ≤ m). a)
Object representation probabilities are estimated from the
various object detection results using a Naive Bayes model.
b) Bayesian network model used to estimate grasp success
probability given various grasp evaluations and the object
representation probabilities.

actually correct, and must be able to estimate (ideally
based on actual grasp data) how likely it is that each
grasp evaluation is associated with a successful grasp,
as well as how likely it is that the same evaluation is
associated with an unsuccessful grasp (P (ek|O,S)).

Ideally, each object detector would have separate condi-
tional probability distributions for all possible object rep-
resentations, but as a simplifying assumption can model
all incorrect outcomes as being similar. Likewise, ideally,
each grasp evaluator would have object-specific probability
distributions for successful and unsuccessful grasps, but can
model various objects as behaving similarly.

Figure 2 shows an example situation where there are two
mutually exclusive object representations being considered
(n=2), o1 and o2; ond refers to the case in which the object
is neither o1 nor o2. In this example, there are r=2 object
detectors. d1 is the result from a detector that only detects
o1, and d2 from a detector of only o2; each detector models
the conditional probability distribution over di for detecting
its object (o = oi) and for detecting some other object
(o 6= oi) as Gaussians. Grasp evaluator eg has different
evaluations for objects o1 and o2 but no opinion about the
case where O = ond (and thus contains uniform probabilities
of .5 for that case), while evaluator ec is based only on
raw sensor data and is thus agnostic to object representation.
As with the object detectors, the conditional probabilities of
observing the particular grasp evaluation values are modeled
as Gaussians, with one for successful grasps and one for
unsuccessful grasps for each grasp evaluator.

C. Robustness to Execution Errors

To account for possible errors in grasp execution (due to
imperfect robot calibration or trajectory following), we can
consider a range of possible outcomes for a commanded
grasp when computing P (E|oi, s) and P (E|oi, f) for a
grasp g. Due to errors in execution, we assume that while
attempting to execute a grasp g, we will actually end up at
some perturbed grasp gp. If we have a model for likely it
is that we will end up at gp for a given commanded grasp
g on object o (P (gp|g, o)), we can compute P (E|s, oi) as
follows:

P (E|o, s) =
∫
gp

P (Ep|o, sp)P (gp|g, o) (6)

where Ep is the set of grasp evaluation values for grasp gp
on the object representation o, and sp refers to gp being
a successful grasp. In practice, the integral is likely to be
difficult to compute, so we can instead sample the space of
possible gp and change the integral to a sum over samples,
normalizing so that the sum of the sample probabilities
(P (gp|g)) is 1. P (E|o, f) can be computed in a similar
manner, substituting fp for sp and f for s.

IV. IMPLEMENTATION

In this section, we describe our specific implementation
of the framework presented above. Currently, our implemen-
tation has object detectors for each object in our database,
each of which detects only the one object. Objects that are
detected with a reasonable probability are added to the list of
possible object representations, along with the non-database
(nd) object case. Because our object detector is quite good
at matching the pose of the object model to the point cloud
(in 2-D, which is all that is required for our test situations
due to the limitations of the detector, as detailed shortly),
our representations have only one pose per object model
detected; if this were not the case, we could add additional
representations to our set containing different poses of the
same object model.

Our implementation uses two grasp generators: GraspIt!
provides grasps that were pre-generated and stored based
on the mesh models for object representations in our ob-
ject database, and a point cluster grasp planner generates
grasps for any situation, whether the object is recognized
as potentially being in the database or not. All of the
grasps generated by either type of generator are evaluated
(on all available object representations) using our two grasp
evaluators, which have both precise versions and data-driven
regression versions. The precise versions happen to be the
same evaluation functions used by GraspIt! and by the point
cluster grasp planner for evaluating grasps during planning;
the data-driven regression versions evaluate grasps much
more quickly, based on sets of known good grasps, as
outlined in V.

The hardware used for implementation is the PR2 per-
sonal robot. The features of the PR2 most relevant for this
study include two 7-DOF arms, allowing multiple ways of
achieving a desired grasp pose, and a narrow-field-of-view
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Fig. 3: Distributions of the detection quality metric for
successful detections (the correct object was detected) and
unsuccessful detections (an incorrect object was detected).

stereo camera equipped with a texture projector, providing
dense point clouds of the robot’s workspace (as illustrated
in Fig. 1). Each arm is equipped with a parallel jaw gripper,
which is the end-effector used for the implementation of the
methods presented in this study.

A. Object Recognition

Object recognition is an extremely active field of research
in its own right; the question of which algorithm (or even
which type of sensor data) is currently best suited for
grasping applications is beyond the scope of this study. In
order to provide an implementation of our framework, we
used a simple matching algorithm to seed the database-driven
component. Once an object point cluster is segmented, an
iterative technique similar to ICP [3] attempts to match it
against each 3D model in our database.

The current matching algorithm only operates in 2 dimen-
sions, and thus can only recognize objects sitting upright on a
tabletop, either rotationally symmetrical or sitting in a known
orientation. Furthermore, it only evaluates how well the
points in a cluster match a given model, without reasoning
about negative (or the absence of) sensed data. As a result,
small point clusters will be considered excellent matches for
large database objects, even if they only explain a small part
of the mesh. We believe that such limitations underscore the
importance of robust grasp planning. One of the strengths of
the framework presented here is also its ability to integrate
data from multiple sources. As more general and more
reliable object recognition algorithms become available, they
should directly benefit this approach to grasp planning.

One aspect which requires further attention is the output
of a recognition algorithm, or its detection quality metric.
In general, different recognition algorithms use different
internal quality metrics; our approach returns the quality of
the match between the point cluster and a 3D model as the
average distance between the points in the cluster and their
closest counterpart on the mesh. In order to convert this raw
distance score into estimated conditional probabilitites of
scores for correct and incorrect detection, we applied this
algorithm to a set of 892 point clouds from 44 objects.

Fig. 4: Database-driven grasp planning. Left: object model;
Middle: example grasp; Right: complete set of computed
grasps.
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Fig. 5: Distributions of GraspIt!’s grasp quality metric for
successful and unsuccessful grasps.

Detection scores are modeled as being generated from one
of two Gaussians, one for correct and one for incorrect
detections; the two class-conditional distributions are shown
in Figure 3.

B. Database-driven Planning

For computing and evaluating grasps on 3D meshes con-
tained in our database of models, we used the publicly
available GraspIt! [15] simulator. To evaluate the quality of
a given grasp, and to plan new grasps for an object, we used
the energy metric and simulated annealing search described
in [6]. An example is shown in Fig. 4.

Testing a novel grasp on a known 3D model can be
performed explicitly, inside the simulator. However, this test,
performed at run-time, is computationally expensive (on the
order of 100ms per grasp). The alternative is to use the
regression method presented in [5], where the set of known
grasps Gr can be precomputed off-line. Fig. 4 also shows a
complete set of reference grasps pre-computed for a given
object.

As in the case of object recognition, in order to combine
multiple grasp planners under a single framework, we must
make the conversion from individual grasp quality metrics to
measures that can be used in the Bayes net. In this case, we
need to estimate P (ei|o, s) and P (ei|o, f), or the probability
that the grasp quality metric is associated with a successful or
unsuccessful grasp for a particular object. Again, to provide
an analytical model for this conversion, we used a data-driven



approach, where 490 grasps generated using GraspIt! were
executed on the real robot. Fig. 5 shows the Gaussians used
to model both conditional probabilities.

C. Adding Robustness to Execution Errors

Next we would like to add robustness to errors in grasp
execution to our estimates of P (e|o, s) and P (e|o, f) for
each grasp, as in Equation 6). As mentioned earlier, the full
integral would be very difficult to compute, so we instead
evaluate the quality metric e both at g and at a set of u
grasps gp ∈ Gp(g) that we refer to as the perturbations
of g, or grasps that are other possible outcomes when the
command for executing g is sent to the robot.

In general, e becomes a vector of grasp quality values, ep,
1 ≤ p ≤ u, instead of a single quality value. If we make the
assumption that the grasps in Gp(g) are the only possible
grasp outcomes, estimates for P (e|o, s) and P (e|o, f) for a
grasp g can be computed as follows:

P (e|o, s) =
∑

gp∈Gp(g)

P (ep|sp, o)P (gp|g) (7)

P (gp|g), the probability of actually executing grasp gp
when g is intended (normalized to sum to 1), depends on the
calibration of the robot; we model it as being independent
of o, even though this is not generally the case.

In this study, we built a simple error model by indepen-
dently sampling one perturbation each along the positive
and negative directions of the X , Y and Z axes for the
position component of a grasp g. Each of the 6 perturbations
was assigned a probability P (gp|g) = 1/9, with P (g|g) =
3/9 (probability of correct grasp execution) completing the
model. This model is equivalent to performing an unscented
transformation over (X,Y, Z) with a center point weight
W (0) = 1/3 and standard deviation σ = 0.47cm [13].

V. DATA-DRIVEN REGRESSION

In this section, we describe a method for evaluating a grasp
g on a given object representation o indirectly, based on how
well it matches other grasps that are available for o. If we
assume that gl ∈ Go form a set of grasps for which the grasp
quality metric el is known for each grasp gl, we would like
to evaluate g based on how well it matches the grasps in Go.

This particular regression function is tailored for grasp
databases that contain only positive examples (good grasps),
rather than storing all bad grasps that may have been eval-
uated at some point. Thus we assume that regions with no
grasps encode negative information; that is, a grasp in an
empty region is likely to fail, and so estimated grasp quality
should drop off sharply away from stored grasps (assuming
that el is scaled to be between 0 and 1, with 1 being a good
grasp and 0 being a bad grasp).

Recall that, in our implementation, the definition g of a
grasp encodes the position and orientation of the gripper,
which we will denote as pg and qg , respectively. Intuitively,
two grasps are similar if they define two gripper poses that
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Fig. 6: Illustration of the data-driven regression function. The
black circles represent known grasps from Go, with the green
bell curves showing the dropoff functions centered at each
grasp. The Locally Weighted Linear Regression function
L(g) is shown by the dotted red line, and the resulting quality
estimation function is shown by the thick blue line.

are close to each other in a Euclidian sense. We define the
following distance function between two grasps g and gr:

K(g, gr;σ) = G(||pg − pgr ||; 0, σp) ∗G(θqg,qgr ; 0, σq) (8)

where G(x;µ, σ2
g) is a Gaussian with mean µ and variance

σ2
g , σ has position standard deviation component σp and

orientation standard deviation component σq , and θqg,qgr is
the smallest rotational angle between the quaternions qg and
qgr . Note that this distance metric assumes that the position
and orientation of the grasp are independent.

We compute a Locally Weighted Linear Regression func-
tion L(g) with a Gaussian kernel over the quality metrics for
the grasps in Go as follows:

L(g) =

∑
gl∈Go

elK(g, gl;σa)∑
gl∈Go

K(g, gl;σa)
(9)

L(g) essentially takes on the quality value of the nearest
grasp, except where two grasps are within the range of the
smoothing bandwidth σa, which in our implementation has
values of [0.0025m, 0.025rad].

We then estimate the quality e of a new grasp g as:

e = min

(
L(g),

el maxgl(K(g, gl;σb))

)
(10)

Here, K(g, gl;σb) is employed as a smooth dropoff func-
tion, which lowers the estimated quality away from positive
data points. Thus σb, which we will refer to as the grasp
bandwidth, is a measure of the size of a region around itself
that a given grasp informs, which in our implementation has
values of [0.01m, 0.001rad].

A. Cluster-based Planning

The second grasp generator and evaluator used in this
paper relies solely on the observed point cloud of an object.
As a result, it is applicable in a wide range of scenarios, as



Fig. 7: The set of test objects used in this study.

it does not depend on other components such as a model
database, recognition algorithm, or primitive fitter.

We used the point-cloud-based grasp evaluation and plan-
ning algorithms presented in detail in [11]. This planner uses
a set of heuristics, such as hand alignment with the cluster
bounding box, size of the bounding box compared to gripper
aperture, and number of observed points that fit inside the
gripper, to assess the quality of grasp, and also to populate
a list of grasp candidates. Because the point cluster is the
same regardless of the object identity, P (e|o, s) is the same
for all o.

The conditional probability distributions used in our model
are modeled using a bimodal distribution: a significant frac-
tion of grasps have a quality score of 0, which makes the
overall distribution non-Gaussian, so instead we split both
success and failure conditional distributions into a mode with
scores at 0 and a Gaussian mode covering the rest of the
space: the Gaussian part of P (e|s) has a mean of 0.68 and
a variance of 0.26, and the Gaussian part of P (e|f) has a
mean of 0.74 and a variance of 0.22; 32% of successful
grasps have a quality score of 0, as opposed to 73% of
unsuccessful grasps. These parameters were computed from
3647 grasps planned on actual point cloud data, evaluated by
the cluster evaluator, and then tested using GraspIt!. A grasp
with a greater than 80% probability of success according to
the GraspIt! energy metric was deemed to be successful.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

We now have implementations available for all the com-
ponents of the framework of Eq. 4, with the additional option
of using the regression-based evaluator outlined in V. Our
test set, shown in Fig. 7, consisted of 25 objects common
in human environments, such as dinnerware and containers
of various shapes. The models of these objects were all part
of the database used for object detection. The database also
contained 45 additional models that, while not part of our
real-life test set, were included in the detection results and
used by the database-driven grasp planning component.

In order to analyze robustness to detection errors, we also
performed tests where each object was temporarily removed
from our model database, to simulate grasping non-database
objects while retaining knowledge of actual object pose and
shape for ground-truth evaluation. We refer to this condition
as novel-object testing. We note that for objects belonging
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Fig. 8: Comparison of the top grasps returned by the
Bayesian grasp planner described in this paper; the collabora-
tive grasp planner described in [5], and the individual grasp
evaluators (GraspIt!-based and cluster-based) used in both
probabilistic frameworks, for 250 scans of objects contained
in the object database.
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Fig. 9: Comparison of the same set of planners, for the
same 250 scans of objects, but with each object in question
temporarily removed from the object database (novel-object
testing).

to a class well-represented in our set (such as cylinders), a
similar but non-identical object was often available.

We tested the results of the Bayesian grasp planning
framework described in this paper in simulation, using
GraspIt! to evaluate the planned grasps. All the tests were
run on real-life point clouds of the objects acquired with the
PR2 robot’s stereo cameras. For the simulated tests we used
recorded real-life sensor data as input, manually annotated
with ground truth information for object identity and pose.

A typical test of the grasp planner on one of the objects
in our set used a recorded point cloud of the object sitting
alone on a table as input to the planner, then used the
simulation engine to test all the returned grasps. Each grasp



was evaluated in simulation on the ground-truth object model
and location, and its quality metric and ground-truth success
probability were evaluated as described in Sec. IV-B. The
ground-truth success probability was then compared against
the confidence estimated by the planner. It is important to
note that, while the planner could only see a single point
cloud of the object (similar to run-time conditions on the
robot), the final ground-truth testing of the planned grasps
in simulation was performed against a complete object model
placed at the correct location in the world.

As mentioned earlier, this paper builds upon [5], in which
a similar framework was presented that we call here the
collaborative grasp planner; the implementation presented for
that framework used exactly the same object detectors, grasp
planners, and grasp evaluators described here. The method by
which their results were combined, however, was somewhat
ad-hoc and limited to exactly that set of detectors, planners,
and evaluators.

Because the results in [5] showed that the regression-
based GraspIt! evaluator generates roughly equivalent results
to doing more expensive, precise evaluation by testing pro-
posed grasps in GraspIt! directly, we used the regression-
based GraspIt! evaluator in all of our tests. The cluster-based
evaluator, on the other hand, computes its grasp evaluations
quickly enough to use the precise version.

Figures 8 and 9 show results comparing the top 50 grasps
returned by the Bayesian grasp planner, the collaborative
grasp planner, the cluster-based planner, and a GraspIt!-based
planner that returns grasps that are estimated to succeed more
than 90% of the time for the top object detection result. The
x-axis shows the number of grasps (x=2 means only the top
two grasps returned for each of the 250 scans), and the y-
axis shows the fraction of those grasps with a greater than
80% probability of success according to the GraspIt! energy
metric when computed on the ground-truth object geometry.

Figure 8 shows results for all planners when the actual
object in the scan is contained in the object database; the
detection is correct the vast majority of the time, and so
the GraspIt!-based planner does quite well. The cluster-based
planner has no concept of object models, and only has a
partial scan to go on, and thus its grasps succeed less often.
The Bayesian and collaborative planners using inputs from
both perform approximately as well as the GraspIt!-based
planner; the top grasp tends to be slightly better because they
are somewhat more resistant to the few object mis-detections,
but the later grasps are somewhat worse because the cluster
planner does not trust perfectly valid grasps of occluded parts
of the objects.

Figure 9 shows results for all planners in the novel-object
case; the object is not contained in the database, as is often
the case with objects encountered in real life, and thus the
GraspIt!-based planner does quite poorly; the cluster-based
planner has the same performance as before. The Bayesian
and collaborative planners perform better than either of their
inputs, since they can make use of grasps from similar-
looking objects in the database without also selecting grasps
that are not supported by the partial object scan.

As you can see, the Bayesian and collaborative planners
have very similar performance; the Bayesian framework,
however, is more general, allowing the inclusion of arbi-
trary numbers of object detectors, grasp planners, and grasp
evaluators, and also combines them in a purely data-driven
fashion, as opposed to a hand-tuned, ad-hoc fashion. Because
the simulation results for both planners are so similar, we
did not carry out additional experiments comparing the
Bayesian planner to the collaborative planner on the actual
PR2 robot, expecting them to be nearly identical. In [5], we
compared the performance of the collaborative planner with
a naive planner that uses the GraspIt!-based planner when the
recognition results were above a threshold, and the cluster-
based planner when the results were below; the collaborative
planner had the most significant impact in the case of novel-
object testing (improving from 72% to 88% success rate on
25 objects), while also showing a smaller improvement in
the case of database objects (from 84% to 88%).

VII. CONCLUSIONS AND FUTURE WORK

We have presented a probabilistic approach to grasp
planning based on the observation that real-life sensed data
of an object is often incomplete and noisy, allowing for
multiple interpretations of a scene. The different ways to
interpret object data suggest different approaches to the
grasp planning problem. Our framework attempts to combine
these approaches and look for consensus among them, thus
choosing final solutions (grasps) that are robust to errors in
both perception and grasp execution.

In particular, the implementation that we have presented
uses grasp suggestions from all available grasp planners, then
uses a Bayes net model to estimate the probability of success
of each grasp, combining information from multiple object
recognition algorithms, as well as multiple grasp evaluation
algorithms.

In our implementation, we employ both an object-model-
based grasp planner/evaluator and a point-cloud-based grasp
planner/evaluator, which, when used in our Bayes net frame-
work, allows the overall system to handle situations ranging
from completely unknown objects to tentatively recognized
models to confidently recognized models in a consistent and
principled way.
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