
SBP-Guided MPC to Overcome Local Minima in Trajectory Planning

Emily Hannigan1, Bing Song1, Gagan Khandate1, Ji Yin1, Maximilian Haas Heger1 and Matei Ciocarlie1

I. INTRODUCTION

Trajectory planning is often a difficult task for high-
dimensional systems, especially those with non-linear dy-
namics. Two common methods for trajectory planning in
non-linear systems are Model Predictive Control (MPC) and
kinodynamic Sampling-Based Planning (SBP). In this paper,
we focus on a variant of MPC called the iterative Linear
Quadratic Gaussian (iLQG) algorithm[1]. iLQG has been
shown to be fast and effective for generating trajectories
to reach a goal. However, when optimizing for non-linear
dynamics, it runs the risk of falling into local minima. Unlike
iLQG, SBP methods such as Rapidly-exploring Random
Trees (RRT) [2] can be robust to local minima because they
explore by taking random actions instead of following a
gradient. However, for similar reasons, SBP often produces
inefficient trajectories.

We combine these two algorithms to take advantage of
the specific strengths of each. We show that by using an
RRT-produced trajectory as a warm start for iLQG, we can
overcome local minima while still producing an efficient
trajectory. On a specific system model (a robot snake), we
show that the combination of these two algorithms allows the
robot to reach a goal faster than the use of either algorithm
alone in most cases.

In general terms, we define our problem as follows. Con-
sider a robot model with state space x and action space u.
The dynamics (or forward) model f determines the behavior
of the system in discrete time steps as f(xt,ut) = xt+1.
The goal is to determine an action sequence U = {u0...uT }
such that the final state of the robot xT matches a desired
configuration xd. We note that xd might only specify desired
values for a subset of x, leaving the rest of the state variables
unconstrained.

II. ILQG TRAJECTORY OPTIMIZATION

iLQG is an MPC algorithm that works by progressively
refining an action sequence U in order to minimize a cumula-
tive cost, defined for each pair of states and actions. Starting
from an existing action sequence, iLQG uses the model of
dynamics f() to predict the state of the robot as it follows the
resulting trajectory, as well as its cumulative cost. iLQG then
attempts to optimize the cost w.r.t. to the actions by assuming
locally linear dynamics around the current trajectory. These
iterations repeat until convergence, at which point the robot

1Department of Mechanical Engineering, Columbia University, New
York, NY 10027, USA.
{ejh2192, bing.song, gk2496, ji.yin, mkh2149,
matei.ciocarlie}@columbia.edu

Fig. 1. This is a 200,000 vertex RRT tree for our five link snake. Each
red numbered point represents a goal vertex which is used to generate ten
trajectories used in the results section. The snake is shown at scale in three
positions as it moves toward the goal

takes the first or the first few actions from this improved
action sequence, and the process restarts.

This methods is effective at generating action sequences
for complex dynamical systems. However, due to the as-
sumption of locally linear dynamics, it can get stuck in local
optima. Furthermore, it requires an initial “guess” for an
action sequence in order to begin the optimization process,
and can be sensitive to the quality of this starting sequence.

III. KINODYNAMIC SAMPLING-BASED PLANNING

Kinodynamic SBP also aims to find action sequences that
reach a certain goal. However, in contrast to iLQG, such
methods work through random exploration of the state and
action spaces. We focus here on kinodynamic RRT, a variant
of SBP, as our method of choice. This method builds a tree
of vertices, each storing a state x. The tree grows by using
a local planner that is able to extend a tree vertex towards a
randomly sampled point in state space; the local planner we
use here consists of simply trying a set of random actions and
choosing the best one. The action that corresponds to each
branch of the tree is saved along with the newly introduced
vertex, allowing us to trace an action sequence from any
node in the tree back to the root.

SBP methods such as RRT are effective at avoiding local
optima, thanks to the intrinsically stochastic nature of the
exploration. While a model of the dynamics is needed when
sampling actions to grow the tree, no gradients need to be



Fig. 2. Each goal number references a goal point in Figure 1. Each bar
represents the time it took for a trajectory to reach that goal.

computed. However, these methods can be slow in high-
dimensional state spaces with complex dynamics; further-
more, the trajectory produced is generally sub-optimal.

IV. PROPOSED METHOD

To improve the performance of iLQG, we use trajectories
generated by RRT in two different ways. First, instead of
optimizing over the entire distance to the final goal with
iLQG, we split the computation into a series of waypoint
goals generated by the longer RRT trajectory. This reduces
the trajectory length that iLQG needs to improve over.
Second, for each subtrajectory that iLQG is given, RRT
also provides a “warm start” – an initial guess for iLQG
to begin its optimization on. We show that this iLQG+RRT
has a significant speedup in a range of scenarios. In our
experiments, we show that for many trajectories, iLQG is
either trapped or slowed down by local minima, and by using
our iLQG+RRT method, we are able to completely avoid
the local minima and get to the goal quick and effectively.
To demonstrate this improvement, we compare trajectories
generated by our method to the trajectories computed by
iLQG alone (with an initial trajectory of all zero actions)
and RRT alone.

V. RESULTS

We demonstrate our method on a model of a five-link
2D simulated snake robot with four actuated joints. The
state vector x ∈ R14 consists of the angular positions
and velocities of the joints, plus the cartesian position and
velocity of the head. The action vector a ∈ R4 contains the
applied joint torques. The dynamic model f() consists of
an explicit time-stepping integration scheme that solves for
joint accelerations at each time step then integrates to obtain
the next state. To allow for forward locomotion, we use an
anisotropic friction model for each link, with coefficients
of friction of 0.1 in the forward direction and 0.9 in the
tangential direction. Goals are specified as desired cartesian
positions for the head of the snake.

For experiments involving RRT, we pre-compute a
200,000 node RRT tree spanning the vicinity of the start
state. In the current version of the algorithm, tree geneartion
takes 24 hrs to compute. However, we consider this to be

pre-computation time, re-used for any subsequent goal. We
note that the tree includes no cartesian obstacles; however,
the dynamics constraints of our system are difficult enough
to make progress in any cartesian direction a very difficult
task even in the absence of obstacles.

We chose ten goals to compare trajectory planning al-
gorithms. Figure 1 shows these goals superimposed on the
RRT tree. For each goal, we compute a trajectory using three
methods: iLQG, RRT, and iLQG+RRT. We plot the time for
each trajectory to reach the goal as a bar graph in Figure 2.

We notice a trend in the performance of iLQG and the
location of the goals. For goals 1, 2, 4, 5, and 9, iLQG+RRT
and iLQG perform similarly. But for goals 3, 6, and 7, iLQG
trajectores take a long time to begin moving, and for goals
8 and 10, iLQG is completely stuck. This is likely due to
iLQG falling into local minima. For these cases, the time
to goal for iLQG vs iLQG+RRT highlights the benefits of
waypoints and “warm starts”.

We hypothesize that the local minima that iLQG falls into
in the forward direction may be a result of the discontinuities
in our friction model. The discontinuity in our dry friction
model is the boundary between static and kinematic friction
which occurs right as the snake begins to move. It is in these
cases where we see the benefit of using our method. iLQG
is very sensitive to starting position, and the multiple warm
starts it recieves using the RRT waypoints is likely helping
it to avoid those minima. This study represents a work in
progress, and there are a number of topics that require further
attention:

• The RRT tree is expensive to compute, and, in the
current form, specific to a given start state. We have also
not tested our method with cartesian obstacles, which
would require a separate RRT tree for each obstacle
configuration, and significant cost engineering in iLQG
to guarantee a collision-free path. We would like to
develop an alternative formulation where the tree is
broadly applicable to numerous start situations, in which
case the resources invested in pre-computation deliver
results later on at run time.

• It could be possible to overcome the local minima that
sometimes thwart iLQG by using smoother dynamics
models, instead of using a warm start. However, realistic
frictional models are inherently non-smooth, and there
may be other local minima that are not the result of
discontinuities in dynamics.

Nevertheless, using RRT as a warm start for iLQG shows
potential to be an important strategy for overcoming local
minima. Having a precomputed RRT tree available for a
robot to use in real time when planning trajectories may help
speed up path planning, and in some cases prevent failure.

REFERENCES

[1] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 4906–4913.

[2] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.


