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Motivation ,f

® Trajectory planning is often a difficult task for high-dimensional systems,
especially those with non-linear dynamics.

® Two common trajectory planning methods: Model Predictive Control (MPC) and
Sampling-Based Planning (SBP).

e MIPC: we use the iterative Linear Quadratic Gaussian (iLQG) algorithm

® SBP: we use Rapidly-exploring Random Trees (RRT) (Fig. 1)

® \We hypothesize that the stochastic nature of RRT may help iLQG escape or avoid
local minima.
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Proposed Method: iLQG+RRT
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Figure 1: RRT tree of a 5-link snake with

Without tuning the cost function parameters individually for each goal, there is a
310,000 nodes

subset of goal states for which iLQG either fails or takes a long time to reach. We

suspect this is due to iLQG falling into local optima. To improve the performance  [snake Head Pos. ?
of iLQG, we use trajectories generated by RRT in two different ways: : il
1. Create waypoint goals to split up computation for iLQG. (Fig. 2) . g::lp"'"ts 1

2. Use the action sequence of the RRT trajectory to provide a “warm start”:
an initial guess for iLQG to begin its optimization on. (Fig. 2)
With the iLQG+RRT method, we are able to quickly reach the subset of goals
that iLQG alone either failed or took a long time to reach.
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" Figure 2: Waypoint goals and warm-start trajectories
EXpe riments superimposed on the RRT tree from Fig. 1
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Figure 3: Five-Link 2D snake model

Figure 4: Path of each joint as snake moves toward goal 3 from Fig. 1.

e We tested iLQG+RRT using a model of a five-link, 2D snake with anisotropic

friction. (Fig. 3) - P R -
® For a subset of goals iLQG either fails (8, and 10) or is slow (3, 6, and 7) to ;
reach the goal. In these cases, iLQG+RRT produces successful and fast ="
trajectories to the goal. (Fig. 5) Py .

® In goals where iLQG is successful (1, 2, 4, 5, and 9), iLQG+RRT and iLQG 2 ;O il ) | [

perform similarly. (Fig. 5) o_al a8 Bl o M e, )
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® Fig. 4 shows an example of the improvement of iLQG+RRT. 1 2 56

Goal Number
Figure 5: Time for snake to reach goal. The goal
number corresponds to the red points in Figure 1.

Time For Trajectory To Reach Goal

Recent Results
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e If the cost function is not tuned for each individual goal, iLQG is also
sensitive to the initial state configuration of the snake.

e \We sampled 24 random initial states. For a goal of [-1, 0], iLQG failed
in 4 out of 24 cases. (Fig. 6)

® \We generated a RRT tree for each initial state. (Fig. 7) (a) Figure 6: L DR \‘;,’here LG fails

® iLQG+RRT results in a gocd trajecto ry in each of these four cases. SV O
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Figure 7: RRT tree for each initial state in figure 6



