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   Motivation
● Trajectory planning is often a difficult task for high-dimensional systems, 

especially those with non-linear dynamics. 
● Two common trajectory planning methods: Model Predictive Control (MPC) and 

Sampling-Based Planning (SBP).  
● MPC: we use the iterative Linear Quadratic Gaussian (iLQG) algorithm
● SBP: we use Rapidly-exploring Random Trees (RRT) (Fig. 1)
● We hypothesize that the stochastic nature of RRT may help iLQG escape or avoid 

local minima.

   Experiments

Figure 3: Five-Link 2D snake model

   Proposed Method: iLQG+RRT
Figure 1: RRT tree of a 5-link snake with 

310,000 nodes
Without tuning the cost function parameters individually for each goal, there is a 
subset of goal states for which iLQG either fails or takes a long time to reach. We 
suspect this is due to iLQG falling into local optima. To improve the performance 
of iLQG, we use trajectories generated by RRT in two different ways:
1. Create waypoint goals to split up computation for iLQG. (Fig. 2)
2. Use the action sequence of the RRT trajectory to provide a “warm start”:     

an initial guess for iLQG to begin its optimization on. (Fig. 2)
 With the iLQG+RRT method, we are able to quickly reach the subset of goals 
that iLQG alone either failed or took a long time to reach.

Figure 5: Time for snake to reach goal. The goal 
number corresponds to the red points in Figure 1. 

Figure 2: Waypoint goals and warm-start trajectories 
superimposed on the RRT tree from Fig. 1
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(a) iLQG (c) iLQG+RRT(b) RRT

Time: 21.91sTime: 8.25s Time: 4.31s

Figure 4: Path of each joint as snake moves toward goal 3 from Fig. 1.

● We tested iLQG+RRT using a model of a five-link, 2D snake with anisotropic 
friction. (Fig. 3)

● For a subset of goals iLQG either fails (8, and 10) or is slow (3, 6, and 7) to 
reach the goal. In these cases, iLQG+RRT produces successful and fast 
trajectories to the goal. (Fig. 5)

● In goals where iLQG is successful (1, 2, 4, 5, and 9), iLQG+RRT and iLQG 
perform similarly.  (Fig. 5)

● Fig. 4 shows an example of the improvement of iLQG+RRT.

Recent Results

● If the cost function is not tuned for each individual goal, iLQG is also 
sensitive to the initial state configuration of the snake. 

● We sampled 24 random initial states. For a goal of [-1, 0],  iLQG failed 
in 4 out of 24 cases. (Fig. 6)

● We generated a RRT tree for each initial state. (Fig. 7)
● iLQG+RRT results in a good trajectory in each of these four cases.  

Figure 6: Initial snake states where iLQG fails

Figure 7: RRT tree for each initial state in figure 6 
respectively
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Figure 8: Snake 
joint movement 
for Fig.6.b
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