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Abstract— Robotic grasping in unstructured environments
requires the ability to select grasps for unknown objects and
execute them while dealing with uncertainty due to sensor noise
or calibration errors. In this work, we propose a simple but
robust approach to grasp selection for unknown objects, and
a reactive adjustment approach to deal with uncertainty in
object location and shape. The grasp selection method uses 3D
sensor data directly to determine a ranked set of grasps for
objects in a scene, using heuristics based on both the overall
shape of the object and its local features. The reactive grasping
approach uses tactile feedback from fingertip sensors to execute
a compliant robust grasp. We present experimental results to
validate our approach by grasping a wide range of unknown
objects. Our results show that reactive grasping can correct
for a fair amount of uncertainty in the measured position or
shape of the objects, and that our grasp selection approach is
successful in grasping objects with a variety of shapes.

I. INTRODUCTION AND RELATED WORK

As algorithms for autonomous operation are constantly

evolving, complete robotic platforms with the ability to

combine perception and action are starting to explore the rich

set of applications available in unstructured environments. As

part of this effort, this paper presents a set of algorithms that

use real-time sensor data for grasping novel objects, with a

focus on the two main components of an object acquisition

pipeline: grasp selection and grasp execution.

The grasp selection (or grasp planning) task can be broadly

defined as follows: given an object to be acquired using a

robotic hand, find a combination of hand posture and position

relative to the object that results in a grasp that is likely to

resist expected perturbations (we note that the hand posture

component is mainly applicable to dexterous hand designs).

As grasps are, by nature, object-dependent, grasp selection in

real-life applications is intrinsically tied to the sensory data

available to the robot, especially if the robot is expected to

operate on a variety of objects in multiple poses.

Grasp selection has been widely explored in recent work.

Miller et al. [13] explored the use of shape primitives for ob-

ject grasping. Their approach relied on having known models

for the objects based on which grasps for the objects could

be analyzed in the grasping simulation software GraspIt!.
Srinivasa et al. [19] pre-computed grasps for objects and

then executed them based on registration of the objects in

the environment, and Geidenstam et al. [4] used box-based

decompositions of simulated 3-D point clouds to learn 2-

D grasping strategies for objects. The use of known 3-D

models precludes these techniques from being used for grasp

selection in unstructured environments. While there has also
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been recent work in constructing 3-D object models for

grasping [11], [10], the quality of these models is still not

good enough to be suitable for use in a grasping framework

like GraspIt!. In contrast to the approaches that use 3D model

information, our methods do not require a known model of

the object to be grasped, and can be used even when sensor

data is available only for parts of the objects.

Several systems have also used 2-D image data to try

and compute grasps for unknown objects. Saxena et al. [18]

attempted to learn grasp points directly from 2-D image data.

Kamon et al. [9] also attempted to learn grasps from visual

information. Pelossof et al. [15] used a learning based ap-

proach to estimate the quality of a grasp. However, no effort

was made in these approaches to integrate reactive grasping

to account for uncertainty in the location of the grasp. In [7],

the work most similar to ours, a laser rangefinder was used

to separate objects out from the background and pick them

up. This approach allowed an assistive robot to pick up a

wide range of everyday objects.

While range and imaging sensors may provide sufficient

information for grasp selection, these sensors have short-

comings in the context of grasp execution. Grasp selection

relies on (often static) information about the target object,

which is well suited for sensors such as monocular or stereo

cameras or laser range finders. However, some amount of

position and/or modeling error is inevitable when using these

technologies. Errors in grasp execution can also arise from

imperfect calibration, environmental occlusion, or even im-

perfect control of the robot. A system that relies exclusively

on ranged data during grasp execution is likely to encounter

frequent problems.

Greater robustness in grasp execution can be achieved by

incorporating and reacting to data acquired through non-

ranged sensor modalities. Tactile sensors are natively well

equipped for providing information during grasp execution,

as they enable direct sensing of aspects such as contact force

or relative velocity at contact points, without being affected

by the occlusion problems inherent for range sensors. For

example, Petrovskaya et al. [16] and Hsiao et al. [5] used

tactile feedback to localize the position of a known object

model for grasping. Platt et al. [8] and Felip and Morales

[3] used tactile feedback to locally adjust a grasp, the first

by minimizing the net force and torque of the grasp, and the

second by trying to maximize the alignment and symmetry

of the grasp. A haptic feedback approach to grasping with

limited use of visual feedback was presented in [14]. Dollar

et al. [2] used contact sensors on the insides of a compliant

hand to center an object within the hand. Mayton et al. [12]

used electric-field sensing to execute reactive grasps, which



Fig. 1. The PR2 grasping a bowl amongst obstacles.

works well with objects whose di-electric constant is greater

than the surroundings. Hsiao et al. [6] used information

from optical sensors mounted on the fingertips to reactively

conform to the shape of an object; this fails on shiny or

transparent objects. Prats et al. [17] use visual, force and

haptic feedback to design a controller that they demonstrated

for door handle grasping and door opening. However, no

attempt was made at online grasp selection.

In this study, we employ tactile-sensing-based algorithms

to detect and react to contacts encountered during the execu-

tion of a grasp. By employing tactile sensing, we can sense

contacts that indicate that a grasp will result in the object

being pushed away, rather than enclosed, or that a grasp will

be unstable and likely to fail when encountering disturbances.

By sensing these error conditions and adapting the execution

of the grasp, we increase the likelihood of achieving a

successful, stable grasp. We note that such algorithms are

largely independent of the grasp planning process, as many of

the proposed planning methods will benefit from this type of

“reactive” execution. However, integration with our grasp se-

lection algorithm allows us to present and analyze a complete

pipeline operating in a real environment. Furthermore, these

two components complement each other well, as they both

require minimal pre-computed knowledge of the world. As

such, our pipeline is well suited for execution in unstructured

settings, where we believe it will serve as a basis for more

complex applications.

II. HARDWARE PLATFORM

The hardware used for the experiments in this paper is

the PR2 personal robot, a two-armed robot with an omni-

directional base. It has an extensive sensor suite useful

for mobile manipulation, including a tilting laser scanner

mounted to the head, two stereo cameras, an additional laser

scanner mounted on the base, and a body-mounted IMU. One

of the stereo cameras has narrow-angle lenses to generate

accurate depth information for objects close to the robot,

while the other has wide-angle lenses to generate depth

information over a wider field of view. The narrow stereo

sensor is used in this work to generate a 3-D representation

of the objects to be grasped and their environment. Encoders

on each joint also provide continuous joint angle information.

Figure 2 shows the parallel jaw gripper mounted on both

arms of the robot. The gripper has a single actuator consisting

of a brushless DC motor with a planetary gearbox and

an encoder. Each gripper’s fingertips are equipped with a
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Fig. 2. Left: diagram of the fingertip tactile arrays. Right: image of the
PR2 gripper and its sensors, as well as a simplified gripper model used for
grasp selection.

capacitive sensor consisting of 22 individual cells. The 22

cells are divided between a 5×3 array on the parallel gripping

surface itself, 2 sensor elements on the tips of the fingertips,

2 elements on each side of the fingertip, and one on the

back. These capacitive sensors measure the normal pressure

applied in each sensed region. An additional, custom set of

contact sensors were mounted on the palm of the robot and

were used to detect contact between the palm and an object.

III. GRASP SELECTION

Our grasp selection algorithm operates using depth data

obtained from a single frame of the narrow-field-of-view

stereo camera on the PR2. In this type of partial object data, it

is typically the case that the most desirable grasps of objects

involve at least one finger contacting the object in occluded

space. This means that we must use a significantly different

approach for grasp selection than methods that use full 3-

D meshes. However, even when considering only the partial

scan, it is still possible to select viable grasps. For instance,

Saxena et al. [18] learn weights on features associated

with good grasps in 2-D images. Jain and Kemp [7] select

overhead grasps using a small set of simple heuristics: if

the object is small enough to fit within the gripper, the

robot grasps the object by the centroid, with the gripper

oriented perpendicular to the direction of maximum variance;

otherwise, the algorithm uses high points on the objects and

aligns the gripper axis in the direction of the object centroid.

Our approach to grasp selection is similar to previous work

in that we also employ a small set of simple heuristics to

select grasps. However, as we wish to deal with objects and

poses of objects for which the methods of Jain and Kemp are

insufficient, we expand the heuristics to search for an entire

ranked list of grasps for each object, selecting the highest-

ranked grasp that is both reachable and collision-free. We

also draw from the results of Balasubramanian et al. [1],

who have shown that humans tend to select grasps with wrist

orientations that are orthogonal to the object’s principal axis

and its perpendiculars; such grasps tend to be more stable

than those chosen using randomized planners that do not

value orthogonality. Our search method will use heuristics

to search for orthogonal grasps that approach from the top



and the side, in addition to overhead grasps such as those

used in [7], ranking the found grasps using a small set of

simple feature weights.

A. Object point clouds and bounding box finding

Our sensor processing approach begins with data consist-

ing of a point cloud of an entire scene, obtained from the

stereo camera equipped with a texture projector. We first

identify the parts of a point cloud (referred to as point

clusters) that are likely to belong to a single object. To this

end, we make two simplifying assumptions: the objects are

sitting on a flat surface (such as a table), and the minimum

distance between two objects in a scene is at least 3cm. We

then identify the table as the dominant plane in the scene,

and remove its corresponding points. The remaining points

are then clustered together based on their projection on the

table plane, using a variant of the mean shift algorithm;

clusters that exceed a pre-set threshold of 1000 points are

kept and smaller clusters are discarded. The resulting clusters

consist of point clouds of the visible surfaces of the objects.

Due to the nature of our sensor, bright, opaque and matte

objects tend to produce denser clouds, with less missing data.

Our main focus in this study is the utilization of clusters in

grasp selection, rather than the clustering method itself; as

such, we have not performed a quantitative analysis of our

clustering methodology. For a qualitative analysis, all the

grasp examples presented in this paper also include images

of their respective point cluster.

The first processing step on every individual point cluster

is to compute a local, object-centric coordinate system.

Since we assume that objects are resting on a surface, the

vertical direction (relative to gravity) is always given special

treatment and assigned to the local z-axis. We use PCA to

compute the axes of minimum and maximum variance in

the horizontal plane, and assign them to the x- and y-axis

respectively. We then find the bounding box of the point

cluster along those axes and define its center as the origin

of the object coordinate system.

B. Searching for good grasps

Our grasp selection algorithms is based on two main

components. The first component uses a set of heuristics

to generate two sets of possible grasps, one containing the

grasps that are considered to have the highest chance of

success, and the second containing fall-back options to be

attempted only if no grasps from the first set are feasible.

We refer to these as the “preferred” and “fall-back” sets.

The second component of the selection algorithm is used

to further rank each set in order of the perceived chance

of successful execution. Both components use as input the

object point cluster and its bounding box, as well as a model

of the gripper, and the location of the table surface.

The gripper model that we use, shown in Fig. 2, consists

of four boxes: one for each of the two fingertips, one for

the palm, and one for the space between the fingerpads.

The fingertip and palm boxes (shown in the figure in green)

are used to estimate collisions, while the gripper space box

(shown in blue) is used to check if a part of the object is

likely to be enclosed in the grasp. We note that the gripper

space box is only half as wide as the fingertip width, in order

to reward contacts that are centered within the fingerpads. We

define the gripper closing direction to be the axis between

the two fingerpads.

The grasp generator component uses the set of heuristics

presented below, with all axes referenced in the local object

coordinate system described in Section III-A:

• top grasps: the object is approached along the z-axis

(vertical direction). The gripper closing direction is

then aligned with either the x- or y-axis. We note that

grasping around the center of mass of an object is

preferable, as it reduces the torque about the gripper

axis due to the object’s weight. However, since we only

see part of the object, we use the center of the object’s

bounding box as a proxy for the true center of mass.

For both gripper orientations (along x or y), one grasp

is generated, centered above the bounding box’s center.

If the width of the box along the selected axis fits inside

the gripper, the grasp is placed in the preferred set; else,

it is placed in the fall-back set. Multiple grasps are

then generated by moving the gripper along the third

remaining axis, and placed in the fall-back set.

• side grasps: the object is approached in the horizontal

plane, along the x- or y-axes, using the following rule:

if the size of the bounding box along the x-axis fits

inside the gripper, the x-axis is aligned with the gripper

closing direction, while positive and negative y are

used as approach directions. Multiple grasps are then

generated by sampling along the z-axis. These grasps

are all placed in the preferred set. The process is then

repeated with the roles of x and y reversed.

• high point grasps: a set of points are chosen at random

within 2 cm of the top (positive z direction) of the clus-

ter bounding box. For each point, the approach direction

is along the z-axis, with the gripper aligned with the line

that connects the chosen point with the bounding box

center. These grasps are particularly useful for bowls

and other rotationally-symmetric containers with rims.

Our method for determining the exact grasp point is the

same whichever heuristic is used for generation: the search

along the approach direction starts with the gripper fingertips

just outside the object bounding box, then proceeds inward

towards the object. Along the way, we look for grasps with

at least 50 points within the gripper space box, storing the

one with the largest number of points and stopping when

collision is detected between one of the gripper collision

boxes and either the point cloud or its supporting table.

C. Ranking grasps

Once the sets of grasps have been generated, we compute

a weighted sum of a set of features to produce a numerical

quality measure for each grasp. The feature set has been

chosen as follows:

• point count: the number of points within the gripper

model’s space box.



Fig. 3. Examples of grasps chosen by our selection algorithm. The gripper
model is shown by the translucent green collision boxes and the blue space
box, placed at the most desirable grasp. The red points show the object
cluster, the box surrounding the object shows the object bounding box, and
the arrows show other possible grasps, with the red arrow pointing in the
approach direction and the green arrow along the gripper closing axis.

• overhead (binary): 1 for top and high point grasps, and

0 for side grasps. Favoring top grasps proves useful

particularly when employing reactive grasping since

unexpected contacts are more likely to be detected (and

corrected) at execution time for overhead grasps. Side

approaches can push light objects away while applying

forces below the tactile sensors’ sensitivity threshold.

• centered (binary): 1 for grasps that are not along the

edge of the bounding box, 0 otherwise.

• fits in hand (binary): 1 for grasps where the bounding

box of the object fits entirely within the gripper, for the

chosen direction of the gripper closing axis, 0 otherwise.

• side dist: the gripper’s distance (in cm), along the axis

orthogonal to the closing direction, from either the

object center (for overhead grasps) or from 6 cm above

the table (for side grasps). We note that in the case of

side grasps, lower approach directions are preferred as

they are less likely to to knock the object over.

• palm dist: the distance between the fingertips and the

object center along the approach direction.

Weights for the list of features (point count, overhead,

centered, fits in hand, side dist, palm dist) were empirically

chosen to be (1, 500, 800, 1500, -100, -100). Each feature is

multiplied by its respective weight and the result is summed,

with higher-valued grasps preferred.

Several objects and the associated grasps that are found

using our selection process are shown in Figure 3.

D. Grasp execution

Once the sets of preferred and fall-back grasps are ranked,

individual grasps are analyzed based on their rank within the

set. For each grasp, we use a pre-grasp position that is simply

the grasp pose backed away by 10 cm along the approach

direction. We then check whether there is a collision-free,

kinematically feasible joint trajectory from the arm’s current

position to the pre-grasp, and also a consistent Cartesian

trajectory to go from the pre-grasp to the grasp. If a grasp

is deemed infeasible due to either kinematic constraints or

arm collision with the environment, we move on to the next

grasp in the list. Thus, having an entire list of possible grasps

becomes more important as the scene becomes cluttered or

as the object is placed farther away from the robot.

Once a grasp is chosen, the robot first moves the arm to

the corresponding pre-grasp in an open-loop execution, then

proceeds along the Cartesian path to the final grasp, and

then finally closes the gripper. However, for this operation to

result in a stable grasp when executed open-loop, there must

be no errors in sensing, planning or trajectory execution.

To cope with the possibility of such errors, we use reactive

algorithms based on tactile sensor information. Using a pre-

grasp pose ensures that the final stage of the grasp trajectory

is always along the approach direction, which will allow us to

reason about encountering unexpected contacts as described

in the next section.

IV. REACTIVE GRASPING WITH TACTILE SENSORS

The reactive grasping component of our system uses the

PR2’s fingertip tactile arrays, palm contact sensors, and robot

proprioception for a variety of simple, reactive behaviors.

These behaviors are designed with several goals in mind:

to recover from small positional errors, to grasp objects

in a way that minimizes unwanted object pushing, and to

locally adjust grasps that are likely to be marginal. Use of

these behaviors is largely independent of grasp selection.

Furthermore, if a planned grasp can be executed without

adjustment it will, in nearly all cases, be indistinguishable

from an open-loop execution. It is only if unexpected contact

is made during execution or if the resulting fingertip contacts

appear less stable than expected that we attempt to modify

the robot’s behavior. We will now discuss each reactive

behavior in more detail.

A. Reactive approach

We employ Cartesian controllers to move the arm towards

the grasp pose during execution. The controller gains are

set to low values, to avoid applying substantial force to the

object when making unexpected contacts.

During the approach our reactive algorithm acts as follows:

• if a contact is detected on the tip, side, or back of either

fingertip, the gripper will back up and move sideways

around the location of contact.

• after the initial contact, if the next contact is on the tip,

side, or back of the opposite fingertip we assume that

our sideways step was too large and move sideways in

the opposite direction with a halved step size.

• if contact is detected only on the inner side of the

fingertip, no reactive move is attempted; such contacts

typically occur during approaches to objects that are

nearly the dimension of the gripper opening.

• if contact is detected on either palm sensor, approach is

halted; the assumption in these cases is that approaching

further is impossible.

It is important to note that very light objects can be dis-

placed without contacts registering on the tactile pads despite

our use of low controller gains. We expect that improvements
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in the sensitivity of tactile sensors will increase the efficacy

of our reactive algorithms in coping with such objects.

B. Compliant closing

Once the gripper has reached the target grasp position

and initiates closing actuation, there is the potential that one

fingertip will hit the object before the opposite fingertip; in

some this can result in a failed grasp, as the first fingertip may

push the object out of the grasp before the second fingertip

can secure the object. One method to prevent such failures

is by keeping the first fingertip fixed in space while the

second finger continues to close. We achieve this behavior by

changing the target frame for the Cartesian arm controller,

which is typically attached to the gripper’s palm, to the frame

of the contacting fingertip, as shown in Figure 4. This allows

the second finger to compliantly move toward the object

without the first finger applying force, as the Cartesian arm

controllers compensate for the gripper closing.

C. Grasp adjustment

The next stage of our grasping approach is initiated after

both fingertips have made contact with the object; in this

stage the grasp may be adjusted to increase stability. In our

approach we use the fingertip tactile arrays to determine

whether the contacts are centered on the inner surface or

are restricted to the edges of the fingertips; if the object is

touching only the tips or edges of the fingertips, the grasp is

likely to be unstable.

If we sense that the contact is isolated to the tips or edges

we do the following:

• if contact is sensed only on the front part of either

fingerpad near the tip, we attempt to adjust the grasp

by opening the gripper and moving forward along the

approach direction. If this motion results in contacts

with the palm sensors, motion is halted.

• if we only sense contacts on the same edge of both

fingertips, we attempt to adjust the grasp by opening

the gripper and moving in the direction of the contacts.

Once the adjustments have resulted in centered contacts

on both fingerpads, the grasping force is increased to the

desired final grasp level. If increasing the force causes the

contacts to become off-center, the gripper is opened and the

adjustment behavior will be attempted again.

Fingertip hits Back up Step in direction Go down; fingerFingertip hits Back up Step in direction Go down; finger
during approach of hit fingertip hits while closing

Compliant close, Open to adjust, Compliant close, Lift: success!
only saw edges step toward edge contacts look fine

Fig. 5. Example of a reactive grasp sequence using the complete set of
reactive adjustments.

D. The full system for reactive grasping

We combine the behaviors for approach, compliant clos-

ing, and grasp adjustment into an integrated reactive al-

gorithm for grasp execution described in Section III-D. If

the grasp appears have been successful – the contact forces

are centered on the fingerpads, the desired force level has

been reached, and the gripper has a non-zero opening, which

indicates the presence of an object – the object will be lifted

off the table. If the gripper misses the object completely,

a condition indicated by a fully-closed gripper with no

palm contacts, the grasp target pose is moved further along

the grasp approach direction, and the grasp is attempted

again. We note that in some cases, successful grasps can

be indicated by the presence of palm contacts and a fully

closed gripper; this case could occur when an object’s handle

is completely enclosed between the fingers and the palm.

A reactive grasp therefore consists of a series of reactive

adjustments, and the grasp itself can be tried multiple times.

A detailed example of a grasp using the complete set of

reactive adjustments is shown in Figure 5. Both the number

of adjustments within a grasp, and the number of grasp

attempts, are free parameters. In our experiments, we use

two grasp attempts, each potentially employing four attempts

at grasp adjustments. Our qualitative observations show that

increasing the number of adjustments brings quickly dimin-

ishing returns, as failure is usually indicative of a poorly

chosen grasp pose that can not be transformed into a stable

grasp by local, reactive improvements.

E. Reactive Grasping Experiments

Our experimental analysis of the effectiveness of our

tactile-based adjustment algorithm focused on assessing the

range of positional errors that can be accomodated when

using reactive versus open-loop grasping. The target object

in our experiments was a cylindrical can; for a quantitative

analysis, we executed a large number of overhead and side

grasps. In all cases, the robot executed a grasp based on

the expected position of the target. The true position of the

target was then varied by up to 10cm in up both horizontal

directions on the table.

Figure 6 shows the effect of reactive grasping for overhead

grasps, as in the example in Figure 5. The chart shows
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a top-view of the experimental scenario, where the circle

represents the size and expected position of the target, and

two rectangles are used to show the footprints of the fingertip

pads at the nominal grasp position. The two axes of the chart

represent displacement (in cm) of the true position of the

target relative to the expected placement. Only displacements

in one direction are shown for each dimension, since both the

gripper and object are plane-symmetric with respect to both

dimensions. The other quadrants can be inferred by reflecting

the shown chart about the axes.

The green region is the area under which both open-

loop and reactive grasping successfully grasp and lift the

target object. The red region is the area under which reactive

grasping continues to succeed, while open-loop grasping

fails, either by dropping the object entirely or by performing

a marginal, undesirable grasp of just the rim of the can.

The grey region is the area under which neither algorithm

succeeds. We note that even a small displacement of 1 cm

can cause open-loop grasping to either fail or end up in

a marginal grasp. On the other hand, the object can be

displaced up to 9 cm in the direction of one fingertip, and

reactive adjustment can still result in a stable grasp.

Figure 7 shows the results of comparing open-loop and

reactive grasping for side grasps. Here we have only one

plane of symmetry instead of two. The red and green regions

are the same as before, and the dark grey region represents

displacements that are large enough to cause collision with

the pre-grasp position. Open-loop grasp succeeds for dis-

placements up to 3 cm in the y direction, but fails for even a

small displacement in the negative x direction as the object is

squeezed out of the gripper. In contrast, the reactive grasping

approach succeeds for displacements of up to 6 cm in the

y direction and 8 cm at the farthest in the x direction. We

note that adding more re-grasp attempts (beyond our standard

limit of two) can increase the successful range in the x

direction to as far as the arm is able to reach, as the robot

will detect the absence of the object inside the gripper and

try again further along the approach direction.

V. EXPERIMENTAL RESULTS

Testing separate components of a grasping pipeline can

help isolate the benefits of individual adjustments and al-

gorithms. However, the most relevant analysis of robot

behavior is obtained by quantifying its overall performance
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Fig. 7. Reactive vs. open-loop grasping for side grasps, under a wide range
of positioning errors.

Fig. 8. Pose experiments: grasping a box of Raisin Bran and a Tilex bottle.
Here we show four of the six different poses for each object.

in unstructured settings. We thus evaluated the complete

grasping pipeline, comprising both the grasp selector and

the set of reactive behaviors, over a large set (n = 30) of

common objects in a typical human setting.

Each object in the set was placed on a table in front

of the robot. The pose of the object was chosen randomly

(constrained only to lie inside the camera field of view);

for each object, two different poses were tested. For each

pose, the robot attempted to lift the object off the table using

both reactive and open-loop grasping. In each case, the grasp

was computed by the grasp selection algorithm presented in

Section III-D. A set of experiments over the entire object set,

showing point clouds, chosen grasps, and executed grasps

for one of the object poses is shown in Figure 9. For two

objects in this set (a tall, relatively wide Raisin Bran cereal

box and an irregularly shaped Tilex liquid dispenser) we also

performed grasps at four additional poses; results are shown

in Figure 8. The complete set of experiments thus comprised

68 object/pose combinations.

Reactive grasping succeeded in stably grasping and lifting

the object in 66 out of 68 attempts. Open-loop grasping

was successfully executed 60 out of 68 times. Overall,

the combination of grasp selection and reactive adjustment

showed a high reliability level over a wide range of target



objects and poses, using only run-time sensor data and no

pre-computed knowledge base.

Additional insights can be obtained by analyzing the

failure cases for both grasp execution modes. In the case of

reactive grasping, one failure was recorded on a transparent

red glass, which was nearly invisible to the stereo camera. As

a result, the arm collided with an unseen part of the object

while moving towards the pre-grasp pose. The only other

failure case was a cup, for which a grasp was chosen that

ended with the gripper fully closed around the cup handle.

While such a grasp can be desirable, the lack of fingerpad

or palm contacts led to an attempted adjustment, which in

turn resulted in a failed grasp.

The non-reactive grasping method failed for both poses of

the Pantene bottle, and on one pose for each of the following

objects: two transparent glasses, soap bar, tea box, cereal box,

and Tilex bottle. These objects show that reactive grasping is

most useful in the case of objects, such as boxes or jars, that

approach the maximum aperture of the gripper in width. This

is true even when using a calibrated system, such as the PR2

robot, where the difference between stereo camera readings

and joint proprioception is within one or two centimeters in

the main workspace of the arms.

In a final set of experiments, the grasp selector for un-

known objects with reactive grasp adjustment was integrated

into a more complete grasp pipeline. GraspIt! was used to

select grasps for objects recognized (using an ICP-like algo-

rithm on the segmented point clouds) as being in an object

database, and the algorithms presented here were used on

unrecognized objects. The robot was then asked to move 15

objects in groups of 3, autonomously, from one side of a table

to the other and then back, while avoiding obstacles. The

set-up is shown in Figure 1. In this experiment, there were

32 grasp attempts. 19 grasps used open-loop, precomputed

grasps of recognized object poses, and 16 of these succeeded;

13 grasps used the algorithms presented here, and all 13

succeeded, showing that the methods discussed can perform

well in realistic, unstructured situations.

Videos of the grasp selection process, reactive grasp-

ing, and a few of these experiments can be seen at

http://www.youtube.com/watch?v=jfpecgVnCMo .

VI. CONCLUSION

In this paper, we showed that simple heuristics can select

stable grasps for a large variety of objects even when only

partial object scans are available. We further showed that

local reactive behaviors based on tactile sensing can signif-

icantly increase the success rate for grasps under positional

errors or modeling uncertainty.

The intuition behind the quantitative results that we have

presented is that many human-designed objects can be

grasped just by starting from either above or to the side

of the object, aligning the hand with the object principal

axes, and trying to grasp it around the center. If the center

is not graspable, any other part that fits inside the hand can

be attempted, along similar guidelines. Furthermore, tactile

sensing is highly informative for performing adjustments

based on object geometry around the attempted grasp point,

for cases where the estimate of the object’s overall shape or

position deviate from initial expectations.

We expect these methods to break down in situations

requiring complex, situation-specific grasp execution. These

include slippery bottles grasped by the handle; desired grasps

that inherently look marginal in terms of their contacts;

objects that are too light to be sensed by current tactile

sensors; objects too large to fit within the gripper (at which

point a two-handed grasp is required); flat objects (which

could be either slid off the table or into a dustpan-like tool);

and objects that are not easily seen by the sensor generating

the object point clouds (transparent, shiny, small and flat,

etc). All of these situations are the subject of future work.
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Fig. 9. Grasp experiments: for each object, the top picture shows a visualization of the possible grasps found for the object’s point cloud, with the gripper
model placed at the highest-ranked grasp, and the transparent box around the object shows the object bounding box. The bottom picture shows one of the
resulting grasps for that object.


