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Abstract— In this study, we introduce a household object
dataset for recognition and manipulation tasks, focusing on
commonly available objects in order to facilitate sharing of
applications and algorithms. The core information available for
each object consists of a 3D surface model annotated with a
large set of possible grasp points, pre-computed using a grasp
simulator. The dataset is an integral part of a complete Robot
Operating System (ROS) architecture for performing pick and
place tasks. We present our current applications using this data,
and discuss possible extensions and future directions for shared
datasets for robot operation in unstructured settings.

I. DATASETS FOR ROBOTICS RESEARCH

Recent years have seen a growing consensus that one of
the keys to robotic applications in unstructured environments
lies in collaboration and reusable functionality. An immediate
result has been the emergence of a number of platforms
and frameworks for sharing operational “building blocks,”
usually in the form of code modules, with functionality
ranging from low-level hardware drivers to complex algo-
rithms such as path or motion planners. By using a set of
now well-established guidelines, such as stable documented
interfaces and standardized communication protocols, this
type of collaboration has accelerated development towards
complex applications. However, a similar set of methods for
sharing and reusing data has been slower to emerge.

In this paper we describe our effort in producing and
releasing to the community a complete architecture for
performing pick-and-place tasks in unstructured (or semi-
structured) environments. There are two key components
to this architecture: the algorithms themselves, developed
using the Robot Operating System (ROS) framework, and
the knowledge base that they operate on. In our case, the
algorithms provide abilities such as object segmentation and
recognition, motion planning with collision avoidance, grasp
execution using tactile feedback, etc. The knowledge base,
which is the main focus of this study, contains relevant
information for object recognition and grasping for a large
set of common household objects.

Some of the key aspects of combining computational tools
with the data that they operate on are:

• other researchers will have the option of directly using
our dataset over the Internet (in an open, read-only
fashion), or downloading and customizing it for their
own applications;

• defining a stable interface to the dataset component of
the release will allow other researchers to provide their
own modified and/or extended versions of the data to
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the community, knowing that it will be directly usable
by anyone running the algorithmic component;

• the data and algorithm components can evolve together,
like any other components of a large software distri-
bution, with well-defined and documented interfaces,
version numbering and control, etc.

In particular, our current dataset is available in the form of
a relational database, using the SQL standard. This choice
provides additional benefits, including optimized relational
queries, both for using the data on-line and managing it
off-line, and low-level serialization functionality for most
major languages. We believe that these features can help
foster collaboration as well as provide useful tools for
benchmarking as we advance towards increasingly complex
behavior in unstructured environments.

There have been previous example of datasets released in
the research community (as described for example in [3],
[7], [13] to name only a few), used either for benchmark-
ing or for data-driven algorithms. However, few of these
have been accompanied by the relevant algorithms, or have
offered a well-defined interface to be used for extensions.
The database component of our architecture was directly
inspired by the Columbia Grasp Database (CGDB) [5], [6],
released together with processing software integrated with
the GraspIt! simulator [9]. The CGDB contains object shape
and grasp information for a very large (n = 7, 256) set of
general shapes from the Princeton Shape Benchmark [12].
The dataset presented here is smaller in scope (n = 180),
referring only to actual graspable objects from the real world,
and is integrated with a complete manipulation pipeline on
the PR2 robot.

II. THE OBJECT AND GRASP DATABASE

A. Models

One of the guiding principles for building this database
was to enable other researchers to replicate our physical
experiments, and build on our results. The database was
constructed using physical objects that are generally available
from major retailers (while this current release is biased
towards U.S.-based retailers, we hope that a future release
can include international ones as well). The objects were
divided into three categories: for the first two categories,
all objects were obtained from a single retailer (IKEA and
Target, respectively), while the third category contained a
set of household objects commonly available in most retail
stores. Most objects were chosen to be naturally graspable
using a single hand (e.g. glasses, bowls, cans, etc.); a
few were chosen as use cases for two-hand manipulation
problems (e.g. power drills).



Fig. 1. Grasp planning in simulation on a database model. Left: the object
model; Middle: grasp example using the PR2 gripper; Right: the complete
set of pre-computed grasps for the PR2 gripper.

For each object, we acquired a 3D model of its surface
(as a triangular mesh). To the best of our knowledge, no off-
the-shelf tool exists that can be used to acquire such models
for a large set of objects in a cost- and time-effective way.
To perform the task, we used two different methods, each
with its own advantages and limitations:

• for those objects that can be described as surfaces of
rotation, we segmented a silhouette of the object against
a known background, and used rotational symmetry to
generate a complete mesh. This method can generate
high-resolution, very precise models, but is only appli-
cable to rotationally symmetrical objects.

• for all other objects, we used the commercially avail-
able tool 3DSOM (Creative Dimension Software Ltd.,
U.K.). 3DSOM builds a model from multiple object
silhouettes, and can not resolve object concavities and
indentations.

We believe that the 3D models provided in the current release
can be useful for a number of algorithms and tasks (as we
will exemplify in this paper). For future releases, we are
investigating alternative methods for building models of more
general objects, such as combining multiple high-resolution
stereo images.

Overall, for each object, the database contains the follow-
ing core information:

• the maker and model name (where available);
• the product barcode (where available);
• a category tag (e.g. glass, bowl, etc.);
• a 3D model of the object surface, as a triangular mesh.

B. Grasps

For each object in the database, we used the GraspIt!
simulator to compute a large number of grasp points for
the PR2 gripper. We note that, in our current release, the
definition of a good grasp is specific to this gripper, requiring
both finger pads to be aligned with the surface of the object
and further rewarding postures where the palm of the gripper
is close to the object as well. Our grasp planning tool used a
simulated annealing optimization, performed in simulation,
to search for gripper poses relative to the object that satisfied
this quality metric. For each object, this optimization was
allowed to run over 4 hours, and all the grasps satisfying
our requirements were saved in the database; an example of

Fig. 2. The PR2 robot performing a grasping task on an object recognized
from the model database.

this process is shown in Fig. 1. This resulted in an average
of 600 grasp points for each object. In the database, each
grasp contains the following information:

• the pose of the gripper relative to the object;
• the value of the gripper degree of freedom, determining

the gripper opening;
• the value of the quality metric used to distinguish good

grasps.
We note that this process can easily be extended to other

robot hands as well. For more dexterous models, a different
grasp quality metric can be used, taking into account multi-
fingered grasps, such as metrics based on the Grasp Wrench
Space [4]. The Columbia Grasp Database also shows how
large scale off-line grasp planning is feasible even for highly
dexterous hands, with many degrees of freedom [5]. We
hope that future releases will also include grasp information
for some of the robotic hands most commonly used in the
research community.

III. APPLICATIONS

The database described in this study was integrated in a
complete architecture for performing pick and place tasks on
the PR2 robot. A full description of all the components used
for this task is beyond the scope of this study. We present
here a high-level overview with a focus on the interaction
with the database; for more details on the other components
we refer the reader to [2].

In general, a pick-and-place task begins with a sensor
image of the object(s) to be grasped, in the form of a point
cloud acquired using a pair of stereo cameras. Once an object
is segmented, a recognition module attempts to find a match
in the database, using an iterative matching technique similar
to the ICP algorithm. We note that this recognition method
only uses the 3D surface models of the objects stored in the
database. In the future, we intend to experiment with more
powerful object recognition methods, which might require
different types of data for each database object.

If a match is found between the target object and a
database model, a grasp planning component will query the
database for all pre-computed grasp points of the recognized



object. Since these grasp points were pre-computed in the
absence of other obstacles and with no arm kinematic
constraints, an additional module checks each grasp for fea-
sibility in the current environment. Once a grasp is deemed
feasible, the motion planner generated an arm trajectory for
achieving the grasp position, and the grasp is executed. An
example of a grasp executed using the PR2 robot is shown
in Fig. 2.

Even though this study is mostly concerned with the
known object dataset, we believe it is important to point
out that this manipulation pipeline can also operate on novel
objects. In this case, the database-backed grasp planner
is replaced by an on-line planner able to compute grasp
points based only on the perceived point cloud from an
object. Grasp execution for unknown objects is performed
using tactile feedback in order to compensate for unexpected
contacts. We believe that a robot operating in an unstructured
environment should be able to handle unknown scenarios
while still exploiting high-level perception results and prior
knowledge when these are available. This dual ability also
opens up a number of promising avenues for autonomous
exploration and model acquisition which we will discuss in
the next section.

In an experiment designed to test the reliability of the
grasping architecture, the robot was to perform 2 pick-and-
place operations on each of 15 objects, for a total of 30
operations. 29 of 30 operations succeeded; one object was
inadvertently collided with while executing a different task.
10 of the 15 objects were in the model database; in 15 of
20 detections they were correctly recognized. In addition,
2 unknown objects were mistakenly classified as database
models. However, of these 7 recognition errors, only 2
resulted in grasp failures: 3 objects were grasped successfully
even though they were not recognized (being treated as novel
objects), and 2 were recognized as models that were close
enough in shape to the true object to allow task completion.
Finally, one object was dropped despite correct recognition.
This behavior was also demonstrated in a live environment at
the 2010 Intl. Conf. on Robotics and Automation. Over three
days of execution, the system often operated continuously
without grasp failures for periods of time ranging from 30
minutes to 1 hour, and successfully grasped novel objects
(such as shoes, apples, keys, or hats) supplied by spectators.

IV. WORK IN PROGRESS AND FUTURE DIRECTIONS

We believe that the dataset that we have introduced, while
useful for achieving a baseline for reliable pick and place
tasks, can also serve as a foundation for more complex
applications. Efforts are currently underway to:

• improve the quality of the dataset itself;
• improve the data collection process, aiming to make it

faster, less operator-intensive, or both;
• use the large computational budgets afforded by off-

line execution to extract more relevant features from
the data, which can in turn be stored in the database;

• develop novel algorithms that can make use of this data
at runtime;

Fig. 3. (Best seen in color) Quantifying grasp robustness to execution
errors, from low (red markers) to high (green markers). Note that grasps in
the narrow region of the cup are seen as more robust to errors, as the object
fits more easily within the gripper.

• improve the accessibility and usability of the dataset for
the community at large.

One option for automatic acquisition of high quality 3D
models for a wide range of objects is to use high-resolution
stereo data, able to resolve concavities and indentations, in
combination with a pan-tilt unit. Object appearance data can
be extended to also contain 2D images, from a wide range
of viewpoints. This information can then be used to pre-
compute relevant features, both two- and three-dimensional,
such as SURF [1], PFH [10] or VFH [11]. This will enable
the use of more powerful and general object recognition
methods.

The grasp information contained in the database can be
exploited to increase the reliability of object pickup tasks.
An example of relevant off-line analysis is the study of how
each grasp in the set is affected by potential execution errors,
stemming from imperfect robot calibration or incorrect object
recognition or pose detection. Our preliminary results show
that we can indeed rank grasps by their robustness to
execution errors; an example is shown in Fig. 3. In its current
implementation, this analysis is computationally intensive,
but it can be performed off-line and the results stored in the
database for online use.

The grasping pipeline presented here can also serve as
a foundation for fully automatic model acquisition: a robot
can grasp a previously unseen object, inspect it from multiple
viewpoints, and acquire a complete model, using techniques
such as the ones presented in [8]. Additional meta-data, such
as object classes or labels, can be obtained through on-
line tools such as Mechanical Turk (Amazon.com, U.S.A.).
This is a particularly compelling application, where multiple
robots can independently augment the dataset, and share the
results for increased versatility in manipulating a wider range
of objects.

Finally, as the complete architecture described in this
study is released as part of ROS, we hope that the research
community will find new ways to use and extend this dataset.
By making use of data integrated from multiple sources
and environments, autonomous robots can potentially achieve
higher reliability in more varied scenarios, as we strive
towards truly robust performance in unstructured settings.
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