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Abstract We present a complete software architecture for reliable grasping of
household objects. Our work combines aspects such as scene interpretation from
3D range data, grasp planning, motion planning, and grasp failure identification and
recovery using tactile sensors. We build upon, and add several new contributions to
the significant prior work in these areas. A salient feature of our work is the tight
coupling between perception (both visual and tactile) and manipulation, aiming to
address the uncertainty due to sensor and execution errors. This integration effort
has revealed new challenges, some of which can be addressed through system and
software engineering, and some of which present opportunities for future research.
Our approach is aimed at typical indoor environments, and is validated by long run-
ning experiments where the PR2 robotic platform was able to consistently grasp a
large variety of known and unknown objects. The set of tools and algorithms for
object grasping presented here have been integrated into the open-source Robot Op-
erating System (ROS).

1 Introduction and Related Work

As algorithms for autonomous operation are constantly evolving, complete robotic
platforms with the ability to combine perception and action are starting to explore
the rich set of applications available in unstructured environments. As part of this
effort, we present an approach to reliable grasping and manipulation of household
objects. With the directional goal of enabling autonomous applications in human
settings, we have focused on the following aspects:
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• the ability to grasp and manipulate both known and unknown objects in a reliable
and repeatable manner. The combination of object recognition algorithms and
extensive pre-computed knowledge bases has the potential to extend a robot’s
capabilities and the range of achievable tasks. However, a robot operating in a
human environment is likely to also be faced with situations or objects never
encountered before. In addition, reliable operation in a wide range of scenarios
requires robustness to real-world problems such as imperfect calibration or tra-
jectory following.

• safe operation in a wide variety settings. In particular, a manipulation task should
be collision free for both the robot itself and the object that it is manipulating.

Achieving this type of functionality has required the integration of multiple mod-
ules, each charged with its own subtask, such as:

• scene segmentation and object recognition;
• collision environment acquisition and maintenance;
• grasp planning for both known and unknown objects;
• collision-free arm motion planning;
• tactile sensing for error correction during grasp execution.

It is important to note that each of these components can be considered a research
area in its own right. However, in addition to the technical challenges posed by each
sub-task, their integration reveals the interplay and reciprocal constraints between
them. One of the main features of this study is that it reports on an integrated system,
allowing us to share the lessons learned regarding the importance of each component
as well as the pitfalls of combining them into a complete platform.

The integration of the multiple modules presented in this study was done us-
ing the Robot Operating System (ROS). In addition, the complete architecture is
included in the current ROS distribution1. We hope that it will prove a useful tool
both to researchers aiming to improve manipulation capabilities (who can focus on
one or more particular components of our architecture) and those attempting to build
towards more complex applications (who can use the complete system as a building
block).

There are a number of complete robot platforms that have demonstrated com-
bined perception and action to manipulate objects autonomously in human envi-
ronments, such as [6, 12, 11, 5, 8, 13, 1]. Preliminary results based on our approach
were also presented in [9]. In this study we expand on our previous efforts by adding
a number of components, such as grasp planning for a wide variety of objects, tactile
feedback during task execution, etc.

1 The complete codebase used for achieving the results presented in this paper is available as
part of the ROS C Turtle distribution. See http://www.ros.org for general ROS informa-
tion and http://www.ros.org/wiki/pr2_tabletop_manipulation_apps for doc-
umentation of the relevant code packages.
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Fig. 1 Top: The PR2 robot platform. Bottom: Our system architecture.

2 Technical approach

The overall structure of our system is shown in Fig. 1; in this section we will provide
additional details on each individual component. The hardware used for implemen-
tation is the PR2 personal robot, which has an omni-directional base and two 7-DOF
arms. It is also equipped with a tilting laser scanner mounted on the head, two stereo
cameras, a fixed laser scanner mounted on the base, and a body-mounted IMU. En-
coders provide position information for each joint. The end-effector is a parallel
jaw gripper equipped with fingertip capacitive sensor arrays, each consisting of 22
individual cells.

2.1 Semantic Perception and Object Segmentation

The sensory input to our system is in the form of 3D point cloud data that (on
the PR2 robot) comes from laser range sensors and stereo cameras. The first step
consists of processing this data to obtain semantic information, with the goal of
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segmenting a complete image of the environment into individual graspable objects.
As household objects in domestic environments are usually found on flat planar
surfaces, we exploit this structure and obtain additional semantic information by
computing a planar fit of the surface that provides support for the objects. Euclidean
clustering on the points above the planar support provides the list of graspable ob-
jects in the scene.

In addition, our system attempts to match each segmented object against a
database of known 3D models, using an iterative technique similar to the ICP algo-
rithm. Our current matching algorithm operates in a 2-DOF space, and can therefore
be applied for situations where partial pose information is known (e.g. rotationally
symmetrical objects such as cups, glasses or bowls resting on a flat surface). If the
match between a segmented point cloud and a model in the database exceeds a
certain quality threshold, the object is assumed to be recognized. Fig. 2 shows an
example of a complete scene with semantic information, including the table plane
and both recognized and unknown objects.

2.2 Collision Environment

In order to operate the robot safely in the environment, the system depends on a
comprehensive view of possible collisions. The semantic perception block provides
information about recognized objects and the table plane while data from a wider
view sensor, like the tilting laser on the PR2, is used to generate a binary 3D oc-
cupancy grid in the arm’s workspace. The occupied cells near recognized objects
are filtered to take advantage of the higher resolution information available from
the semantic perception component. The combined collision environment consists
of oriented bounding boxes for occupied cells, box primitives for the dominant ta-
ble plane and for bounding boxes around unrecognized point clusters, and triangle
meshes for the robot’s links and any recognized objects (Fig. 2). The collision en-
vironment is used in grasp selection, to perform collision-aware inverse kinematics,
as well as in motion planning, to check arm trajectories against possible collisions.

2.3 Grasp Planning and Selection

The goal of the grasp planning component is, for every object segmented from the
environment, to generate a list of possible grasps, each consisting of a gripper pose
relative to the object (we note that, for more dexterous hands, a grasp would also
have to contain information regarding finger posture). The current version of our
grasping planning component provides separate methods for creating such a list,
based on whether the object is recognized as one of the models in our database or
treated as an unkown point cluster.
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Fig. 2 Scene perception result. Note unknown obstacles (blue) and obstacles with semantic infor-
mation, such as the table and the objects (green). Recognized objects have complete 3D meshes
superimposed.

All the known objects in our model database are annotated with large sets of
stable grasp points, pre-computed using the GraspIt! simulator [7]. In our current
release, the definition of a stable grasp is specific to the gripper of the PR2 robot,
requiring both finger pads to be aligned with the surface of the object and further
rewarding postures where the palm of the gripper is close to the object as well. Our
grasp planning tool used a simulated annealing optimization, performed in simu-
lation, to search for gripper poses relative to the object that satisfied this quality
metric. For each object, this optimization was allowed to run over 4 hours, resulting
in an average of 600 grasp points for each object. An example of this process is
shown in Fig. 3.

Grasps for unrecognized objects are computed at run-time from 3D sensor data,
using heuristics based on both the overall shape of the object and its local features.
The intuition behind this approach is that many human-designed objects can be
grasped by aligning the hand with the object principal axes, starting from either
above or to the side of the object, and trying to grasp it around the center. If the center
is not graspable, any other part that fits inside the hand can be attempted, along
similar guidelines. Grasps found according to these principles are then ranked using
a small set of simple feature weights, including the number of sensed object points
that fit inside the gripper, distance from object center, etc. A number of examples
are shown in Fig. 3, and additional information about this component can be found
in [4].

Once the list if possible grasps has been populated, execution proceeds in a sim-
ilar fashion regardless of which grasp planner was used. Each of the grasps in the
list is tested for feasibility in the current environment; this includes collision checks
for both the gripper and the arm against potential obstacles, as well as generation of
a collision-free arm motion plan for placing the gripper in the desired pose.
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Fig. 3 Grasp Planning. Top row: grasp planning in a simulated environment for a known object (the
object model, a simulated grasp and the complete set of pre-computed grasps). Middle row: grasp
planning from 3D sensor data for novel objects. Bottom row: grasp execution for novel objects.

2.4 Motion Planning

Sampling-based planning combined with collision-aware inverse kinematics is used
to plan motions to the desired poses for grasping, lifting and placing objects. Paths
are planned to a pre-grasp location that is offset from the desired grasp location,
followed by a straight line path in Cartesian space to the grasp pose. Objects that
have been grasped are attached to the robot model to avoid collisions with the en-
vironment during transport. These models are also padded to provide a buffer zone
while executing motion plans. The planner generates joint-space paths that are fur-
ther rocessed using short-cutting techniques to obtain smooth, collision-free spline
trajectories conforming to joint velocity and acceleration limits.

2.5 Trajectory Execution and Reactive Grasping

The resulting trajectories are executed by a controller that continuously monitors,
and aborts the execution if there is a possibility of collisions at any point, forcing
the system to re-plan a path to the desired goal. During the final stages of the grasp,
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reactive behaviors are used to achieve the desired result despite small errors in object
localization and perceived shape. The first reactive behavior uses information from
the tactile sensors on the fingertips to maneuver around the object when unexpected
contacts are detected during the approach. The second behavior accounts for cases
where one fingertip comes into contact with the object earlier than the other, by
executing a compliant grasp that coordinates the motion of the arm and the gripper
so that the object is not pushed away while the gripper is closed. The final behavior
accounts for grasps that are likely to be unstable by adjusting the position of the
end-effector to achieve a grasp where contacts are seen at the centers of the fingertip
sensor arrays.

3 Experiments and Results

We validated our approach by carrying out experiments for grasping and placing
objects found in typical household environments. Our model database contains 3D
shape information for a subset of the objects we used (e.g., bowls, cups, cans, etc.).
The rest of the objects (e.g., stuffed toy animal, stapler, tape dispenser, wire coil,
etc.) are not part of the dataset, and were therefore treated as unknown models.

Our first set of experiments focused on grasping 30 novel objects, using the on-
line grasp planner working directly on 3D sensor data. We attempted a set of 68
grasping tasks distributed over the objects in our set; Fig. 3 shows a number of
examples from this set. When using open-loop grasp execution, the object was suc-
cessfully grasped and lifted from the table 60 out of 68 times. When tactile-based
reactive grasp execution was used, the success rate increased to 66 out of 68. More
details on the grasping experiments for unknown objects, showing grasp planning
results for each object and including an analysis of the effect of tactile-based error
correction, can be found in [4].

Our second set of experiments were intended as a comprehensive test of the com-
plete system. Here, the task was to continuously move objects between different
locations on a table, in a fully autonomous loop. The objects were presented to
the robot in groups of three, in order to maintain the level of euclidean separation
required by our semantic perception algorithms. The robot would then select an ob-
ject, pick it up from the table and place it down in a new location, while avoiding
collisions with the environment. The presence of additional vertical obstacles, like
the one shown in Fig. 2, considerably limited the free workspace available to the
robot. We note that, during execution, the location of the objects on the table was
often not preset by the user, but was instead the result of previous pick-and-place
operations. Tactile-reactive behaviors were used on grasps of unknown objects, but
not on the stored grasps of known objects.

During this experiment, the robot was to perform 2 pick-and-place operations
on each of 15 objects, for a total of 30 operations. 29 of 30 operations succeeded;
one object was inadvertently collided with while executing a different task. 3 of the
operations required 2 grasp attempts each, for a total of 32 grasp attempts (29+3).
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10 of the 15 objects were in the model database; in 15 of 20 detections they were
correctly recognized. In addition, 2 unknown objects were mistakenly classified as
database models. However, of these 7 recognition errors, only 2 resulted in grasp
failures: 3 objects were grasped successfully even though they were not recognized
(being treated as novel objects), and 2 were recognized as models that were close
enough in shape to the true object to allow task completion. Finally, one object was
dropped despite correct recognition. Overall, 25 of 32 detections were correct, and
29 of 32 grasps succeeded.

This behavior was also demonstrated in a live environment at the 2010 Intl. Conf.
on Robotics and Automation. Over three days of execution, the system often oper-
ated continuously without grasp failures for periods of time ranging from 30 min-
utes to 1 hour, and successfully grasped novel objects (such as shoes, apples, keys,
or hats) supplied by spectators.

4 Discussion and Conclusions

In this work, our goal was to achieve reliable grasping of typical household objects.
The approach we present was successful in performing pick and place tasks on a
wide set of objects and our quantitative results show that consistent performance
can be achieved from a set of basic behaviors. At its core, our approach was to
break down a complex task into manageable components for which we designed
simple but reliable solutions. Another key to the success of our approach is the tight
integration of information from a variety of sensors, in a manner that exploits the
particular strengths of each sensor to create a consistent view of the environment.
The use of local reactive behaviors to quickly correct globally-planned motions has
also proven critical to designing a fast, robust system.

An interesting question regards the combination of semantic perception with a
pre-computed knowledge base for manipulation tasks. Our grasp planning compo-
nent is split into two modules, with one assuming no prior knowledge about the
grasped object, and the other relying on exact recognition and pose detection. Other
methods, such as grasping based on approximate recognition [3], exist in-between
these approaches. Our system is also currently object-centric, requiring explicit rea-
soning about the target object. In contrast, other grasp planning algorithms bypass
object segmentation and operate on a complete image of the environment [11]. We
will continue to explore such options, as we believe that a robot operating in an
unstructured environment should be able to handle unknown scenarios while still
exploiting high-level perception results and prior knowledge when these are avail-
able.

Our current system does not support highly cluttered scenes that prevent eu-
clidean object segmentation, or unknown objects requiring complex or situation-
specific grasps (e.g., a pitcher to be grasped by the handle). The registration-based
recognition module is limited to 2-DOF pose detection; we expect to obtain better
results by using feature-based recognition [10] and combining 3D point clouds with
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intensity images. The motion planning component would also benefit from algo-
rithms that compute a path through free space all the way into gripper contact with
the target object [2]. These aspects will be the focus of future work.

References

1. Balasubramanian, R., Xu, L., Brook, P., Smith, J., Y., M.: Human-guided grasp measures
improve grasp robustness on physical robot. In: IEEE Intl. Conf. on Robotics and Automation
(2010)
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