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Abstract—Consideration of dataset design, collection and dis-
tribution methodology is becoming increasingly important as
robots move out of fully controlled settings, such as assembly
lines, and into unstructured environments. Extensive knowledge
bases and datasets will potentially offer a means of coping with
the variability inherent in the real world.

In this study, we introduce three new datasets related to mobile
manipulation in human environments. The first set contains a
large corpus of robot sensor data collected in typical office
environments. Using a crowd-sourcing approach, this set has
been annotated with ground-truth information outlining people in
camera images. The second dataset consists of three-dimensional
models for a number of graspable objects commonly encountered
in households and offices. Using a simulator, we have identified on
each of these objects a large number of grasp points for a parallel
jaw gripper. This information has been used to attempt a large
number of grasping tasks using a real robot. The third dataset
contains extensive proprioceptive and ground truth information
regarding the outcome of these tasks.

All three datasets presented in this paper share a common
framework, both in software (the Robot Operating System) and
in hardware (the Personal Robot 2). This allows us to compare
and contrast them from multiple points of view, including data
collection tools, annotation methodology, and applications.

I. INTRODUCTION

Unlike its counterpart from the factory floor, a robot operat-
ing in an unstructured environment can expect to be confronted
by the unexpected. Generality is an important quality for
robots intended to work in typical human settings. Such a
robot must be able to navigate around and interact with people,
objects and obstacles in the environment, with a level of
generality reflecting typical situations of daily living or work-
ing. In such cases, an extensive knowledge base, containing
and possibly synthesizing information from multiple relevant
scenarios, can be a valuable resource for robots aiming to cope
with the variability of the human world.

Recent years have seen a growing consensus that one of the
keys to robotic applications in unstructured environments lies
in collaboration and reusable functionality [1], [2]. A result has
been the emergence of a number of platforms and frameworks
for sharing operational “building blocks,” usually in the form
of code modules, with functionality ranging from low-level
hardware drivers to complex algorithms. By using a set of
now well-established guidelines, such as stable, documented
interfaces and standardized communication protocols, this type
of collaboration has accelerated development towards complex
applications. However, a similar set of methods for sharing and
reusing data has been slower to emerge.
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Fig. 1. Examples from the datasets presented in this study. Left: section of
a camera image annotated with people’s locations and outlines. Middle: 3D
models of household objects with grasp point information (depicted by green
arrows) generated in simulation. Right: the PR2 robot executing a grasp while
recording visual and proprioceptive information.

In this paper, we present three datasets that utilize the
same robot framework, comprised of the Robot Operating
System (ROS) [1], [3] and the Personal Robot 2 (PR2)
platform [4]. While sharing the underlying software and
hardware architecture, they address different components of
a mobile manipulation task: interacting with humans and
grasping objects. They also highlight some of the different
choices available for creating and using datasets for robots.
As such, this comparison endeavors to begin a dialog on the
format of datasets for robots. The three datasets, exemplified
in Fig. 1, are:

• the Moving People, Moving Platform Dataset, contain-
ing robot perception data in office environments with an
emphasis on person detection.

• the Household Objects and Grasps Dataset, containing
3D models of objects common in household and office
environments, as well as a large set of grasp points for
each model pre-computed in a simulated environment.

• the Grasp Playpen Dataset, containing both propriocep-
tive data from the robot’s sensors and ground truth infor-
mation from a human operator as the robot performed a
large number of grasping tasks.

While new datasets can be made available independently of
code or application releases, they can provide stable interfaces
for algorithm development. The intention is not to tie datasets
to specific code instances. Rather, both the dataset and the
code can follow rigorous (yet possibly independent) release
cycles, while explicitly tagging compatibility between specific
versions (e.g., Algorithm 1.0 has been trained on Data 3.2).
The potential benefits of using such a release model for
datasets include the following:

• defining a stable interface to the dataset component of
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a release will allow external researchers to provide their
own modified and/or extended versions of the data to the
community, knowing that it will be directly usable by
anyone running the algorithmic component;

• similarly, a common dataset and interface can enable
direct comparison of multiple algorithms (e.g. [5]);

• a self-contained distribution, combining a compatible
code release and the sensor data needed to test and use
them, can increase research and development community
by including groups who do not have access to hardware
platforms.

The number of mobile manipulation platforms capable of
combining perception and action is constantly rising; as a
result, the methods by which we choose to share and distribute
data are becoming increasingly important. In an ideal situation,
a robot confronted with an unknown scenario will be able to
draw on similar experiences from a different robot, and then
finally contribute its own data back to the community. The
context for this knowledge transfer can be on-line (with the
robot itself polling and then sending data back to a reposi-
tory), or off-line (with centralized information from multiple
robots used as training data for more general algorithms).
Other choices include the format and contents of the data
itself (which can be raw sensor data or the result of task-
specific processing), the source of annotations and other meta-
data (expert or novice human users, or automated processing
algorithms), etc. These choices will become highly relevant as
we move towards a network of publicly accessible knowledge
repositories for robots and their programmers. We will return
to this discussion at the end of the study, after presenting each
of the three datasets in more detail in the following sections.

II. THE MOVING PEOPLE, MOVING PLATFORM DATASET

Personal robots operate in environments populated by peo-
ple. They can interact with people on many levels, by planning
to navigate towards a person, by navigating to avoid a specific
person, by navigating around a crowd, by performing co-
ordinated manipulation tasks such as object hand-off, or by
avoiding contact with a person in a tabletop manipulation
scenario. For all of these interactions to be successful, people
must be perceived in an accurate and timely manner.

Training and evaluating perception strategies requires a
large amount of data. This section presents the Moving People,
Moving Platform Dataset [6], which contains robot sensor data
of people in office environments. This dataset is available at
http://bags.willowgarage.com/downloads/people dataset.html.

The dataset is intended for use in offline training and testing
of multi-sensor person detection and tracking algorithms that
are part of larger planning, navigation and manipulation sys-
tems. Typical distances between the people and the robot are
in the range of 0.5m to 5m. Thus, the data is more interesting
for navigation scenarios such as locating people with whom
to interact, than in table-top manipulation scenarios.

A. Related Work

The main motivation for creating this dataset was to encour-
age research into indoor, mobile robot perception of people.

There is a large literature in the computer vision community on
detecting people outdoors, from cars, in surveillance imagery,
or in still images and movies on the Internet. Examples of
such datasets are described below. In contrast, personal robots
often function indoors. There is currently a lack of multi-
modal data for creating and evaluating algorithms for detecting
people indoors from a mobile platform. This is the vacuum the
Moving People, Moving Platform Dataset aims to fill.

Two of the most widely used datasets for detecting and
segmenting people in single images from the Internet are the
INRIA Person Dataset [7] and the PASCAL Visual Object
Challenge dataset [5]. Both datasets contain a large number
of images, as well as bounding boxes annotating the extent
of each person. The PASCAL dataset also contains precise
outlines of each person. Neither dataset, however, contains
video, stereo, or any other sensor information commonly
available to robots. The people are contained in extremely
varied environments (indoors, outdoors, in vehicles, etc.) Peo-
ple in the INRIA dataset are in upright poses referred to as
“pedestrians” (e.g. standing, walking, leaning, etc.) On the
other hand, poses in the PASCAL dataset are unrestricted. For
the office scenarios considered in this paper, people are often
not pedestrians. However, their poses are also not random.

Datasets of surveillance data, including [8] and the TUM
Kitchen Dataset [9], are characterized by stationary cameras,
often mounted above people’s heads. Algorithms using these
datasets make strong use of background priors and subtraction.

Articulated limb tracking is beyond the scope of this paper
but should be mentioned. Datasets such as the CMU MoCap
dataset [10] and HumanEva-II dataset [11] are strongly con-
strained by a small environment, simple background, and in
the case of the CMU dataset, tight, uncomfortable clothing.

Detecting people from cars has been a focus in the research
community of late. The Daimler Pedestrian Dataset [12] and
Caltech Pedestrian Dataset [13] contain monocular video data
taken from cameras attached to car windshields. Pedestrians
are annotated with bounding boxes denoting the visible por-
tions of their bodies, as well as bounding boxes denoting
the predicted entire extent of their bodies, including occluded
portions. In contrast to our scenario, the people in this dataset
are pedestrians outdoors, and the cameras are moving quickly
in the cars. Similarly to our scenario, the sensor is mounted
in a moving platform.

In contrast to the above examples, the Moving People,
Moving Platform dataset contains a large amount of data of
people in office environments, indoors, in a realistic variety of
poses, wearing their own clothing, taken from multiple sensors
onboard a moving robot platform.

B. Contents and Collection Methodology
1) Collection Methodology: Datasets can be collected in

many ways, and the collection methodology has an impact
on both the type of data available and its accuracy. For the
Moving People, Moving Platform Dataset, data was collected
by tele-operating the PR2 to drive through 4 different of-
fice environments, recording data from onboard sensors. The
robot’s physical presence in the environment affected the data
collected.
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Tele-operation generates a different dataset than au-
tonomous robot navigation; however, it was a compromise
required to obtain entry into other companies’ offices. Tele-
operation also allowed online decisions about when to start
and pause data collection, limiting dataset size and avoiding
repetitive data such as empty hallways. However, it also
opened the door to operator bias.

During collection, the subjects were asked to go about their
normal daily routine. The approaching robot could be clearly
heard, and so could not take people by surprise. Some people
ignored the robot, while others were distracted by the novelty
and stopped to take photographs or talk to the operator. The
operator minimized tainting of the data, although some images
of people with camera-phones were included for realism (as
this scenario often occurs at robot demos).

Capturing natural human behavior is difficult, as discussed
in [14]. A novel robot causes unnatural behavior (such as
photo-taking) but is entertaining, and people are patient. On
the other hand, as displayed toward the end of our data
collection sessions, a robot cohabitating with humans for an
extended time allows more natural behavior to emerge, but
the constant monitoring presence leads to impatience and
annoyance.

2) Contents - Robot Sensor Data: Given that this dataset
is intended for offline training and testing, dataset size and
random access speed are of minimal concern. In fact, provid-
ing as much raw data as possible is beneficial to algorithm
development. The raw sensor data was therefore stored in
ROS-format “bag” files [3]. The images contain Bayer patterns
and are not rectified, the laser scans are not filtered for
shadow points or other errors, and the image de-Bayering and
rectification information is stored with the data. ROS bags
make it easy to visualize, process and run data in simulated
real-time within a ROS system. The following list summarizes
the dataset contents, with an example in Figure 3. Figure 2
shows the robot’s sensors used for dataset collection.

• A total of 2.5 hours of data in 4 different indoor office
environments.

• 70 GB of compressed data (118 GB uncompressed)
• Images from wide field-of-view (FOV), color stereo cam-

eras located approximately 1.4m off the ground, at 25Hz
(640x480).

• Images from narrow FOV, monochrome stereo cameras
located approximately 1.4m off the ground, at 25Hz
(640x480).

• Bayer pattern, rectification and stereo calibration infor-
mation for each stereo camera pair.

• Laser scans from a planar laser approximately 0.5ft off
the ground, with a frequency of 40Hz.

• Laser scans from a planar laser on a tilting platform
approximately 1.2m off the ground, at 20Hz.

• The robot’s odometry and transformations between robot
coordinate frames.

While raw data in a robotics-specific format like ROS
bags is preferred by the robotics community, it is valuable to
consider other research communities who may contribute so-
lutions. For example, the computer vision community pursues
research into person detection that is applicable to robotics

Fig. 2. Left: PR2 robot with sensors used for collecting the Moving People,
Moving Platform dataset circled in red. From top to bottom: the wide FOV
stereo camera pair and the narrow FOV stereo camera pair interleaved on the
“head”, the tilting 2D laser, and the planar 2D laser atop the robot’s base.
Right: the PR2 gripper and the tactile sensors used for collecting data during
grasp execution.

Wide FOV stereo Wide FOV stereo Wide FOV stereo
left camera right camera false-color depth

Narrow FOV stereo Narrow FOV stereo Narrow FOV stereo
left camera right camera false-color depth

3D visualization
Red/green/blue axes: robot’s base and camera frames.

Red dots: data from the planar laser on the robot base.
Blue dots: 0.5 seconds of scans from the tilting laser.

The true-color point clouds are from the stereo cameras.

Fig. 3. A snapshot of data in the Moving People, Moving Platform dataset.

scenarios. To encourage participation in solving this robotics
challenge, the dataset is also presented in a format familiar
to the vision community: PNG-format images. In the current
offering of the dataset, the PNG images are de-Bayered and
rectified to correspond to the annotations (which will be
discussed in the next section); however, they could also be
offered in their raw form.

C. Annotations and Annotation Methodology

1) Annotation: All annotations in the dataset correspond
to a de-Bayered, rectified version of the image from the
left camera of the wide FOV stereo camera pair. Approx-
imately one third of the frames were annotated, providing
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Fig. 4. Examples of ground truth labels in the Moving People, Moving Platform Dataset. The images have been manipulated to improve outline visibility; they
are brighter and have less contrast than the originals. The green bounding box is the predicted full extent of the person. The black bounding box corresponds
to the visible portion of the person. The red polygon is an accurate outline of the visible portion of the person.

Number of Images
Total Labeled W/People

Training files 57754 21064 13417
Testing files 50370 16646 -
Total 108124 37710 -

TABLE I
CONTENTS OF THE MOVING PEOPLE, MOVING PLATFORM DATASET.

Fig. 5. The Mechanical Turk interface for annotating outlines of people for
the Moving People, Moving Platform Dataset. Workers were presented with
the original image with a bounding box annotation of one person (by another
worker) on the left, and an enlarged view of the bounding box on the right.
The worker drew a polygonal outline of the person in the right-hand image.

approximately 38,000 annotated images. Table I presents the
annotation statistics. Annotations take one of three forms:
exact outlines of the visible parts of people, bounding boxes
of the visible parts computed from the outlines, and bounding
boxes of the predicted full extent of people, including occluded
parts. Annotation examples can be found in Figure 4. These
design decisions were driven by the desire for consistency with
previous computer vision datasets, as well as the restrictions
imposed by the use of Amazon’s Mechanical Turk marketplace
for labeling, which will be discussed in the next subsection.

Within the dataset ROS bags, annotations are provided as
ROS messages, time-synchronized with their corresponding
images. In order to align an annotation with an image, the user
must de-Bayer and rectify the images. Since the annotations
were created on the rectified images, the camera parameters
may not be changed after annotation, but the algorithm used
for de-Bayering may be improved. In addition, to complement
the non-ROS dataset distribution, XML-format annotations are
provided with the single image files.

2) Annotation Methodology: Annotation of the dataset
was crowd-sourced using Amazon’s Mechanical Turk mar-
ketplace [15]. The use of an Internet workforce allowed a
large dataset to be created relatively quickly, but also had
implications for the annotations. The workers were untrained
and anonymous. Untrained workers are most familiar with
rectified, de-Bayered images, and so the robot sensor data
was presented as such. As discussed in the previous subsec-
tion, image-based annotations are generally incomplete for a
robotics application.

Two separate tasks were presented to workers. In the first
task, workers were presented with a single image and asked,
for each person in the image, to draw a box around the entire
person, even if parts of the person were occluded in the image.
The visible parts of the person were reliably contained within
the outline; however, variability occurred in the portion of the
bounding box surrounding occluded parts of the person. This
variability could be seen between consecutive frames in the
video. In the vast majority of cases, however, workers agreed
on the general direction and location of missing body parts.
For example, if a person in an image sat at a desk with their
legs occluded by the desk, all of the annotations predicted that
there were legs behind the desk, below the visible upper body,
but the annotations differed in the position of the feet at the
bottom of the bounding box.

In the second task, workers were required to draw an
accurate, polygonal outline of the visible parts of a single
person in an enlarged image. The workers were presented with
both the original image and an enlarged image of the predicted
bounding box of a single person (as annotated by workers in
the first task). An example of the interface can be seen in
Figure 5. As this task was more constrained, the resulting
annotations had less variability.

Mechanical Turk is a large community of workers of varying
skill and intent; hence, quality control of results is an important
issue. Mechanical Turk allows an employer to refuse to pay
or ban under-performing workers. These acts, however, are
frowned upon by the worker community who communicates
regularly through message boards, resulting in a decreased
and angry workforce. Thus, it is important to avoid refusing
payment or banning workers whenever possible. The following
are lessons learned in our quest for accurate annotations.

Lesson 1: Interface design can directly improve anno-
tation accuracy. For the outline annotations described in this
paper, the workers were presented an enlarged view of the
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person’s bounding box. Small errors at this enlarged scale were
irrelevant at the original image size.

Lesson 2: Clear, succinct instructions improve annota-
tion quality. Workers often skim instructions, so pictures with
examples of good and bad results are more effective than text.

Lesson 3: Qualification tests are valuable. Requiring
workers to take a multiple choice test to qualify to work on a
task improved annotation quality significantly. The simple tests
for these tasks verified full comprehension of the instructions,
and were effective tools for removing unmotivated workers.

Lesson 4: The effective worker pool for a task is small.
For each of the two labeling tasks, each image annotation
could be performed by a different worker, implying that
hundreds of workers would complete the thousands of jobs.
This hypothesis was incorrect: approximately twenty workers
completed more than 95% of the work. It appears that workers
mitigate training time by performing many similar jobs. This
also implies that a workforce can be loyal, so it is worthwhile
to train and treat them well, which leads to the final lesson.

Lesson 5: Personalized worker evaluation increases an-
notation quality. Initially, workers graded their peers’ anno-
tations. Unfortunately, since grading was an easier task than
annotating, it attracted less motivated workers. In addition,
loyal annotators were upset by the lack of personal feedback.
Grading the graders does not scale, and failing to notice a
malicious grader leads to numerous misgraded annotations.
These facts encouraged us to grade the annotations personally
and write lengthy comments to workers making consistent
mistakes. The workers were extremely receptive to this ap-
proach, quickly correcting their mistakes, thus significantly
reducing duplication of work. Overall, personalized feedback
for the small number of workers reduced our own workload.

There are other ways to identify incorrect annotations; how-
ever, they were not applicable in this situation. For example,
the reCAPTCHA-style [16] of presenting two annotations
and grading the second based on the first assumes that the
errors are consistent. For the annotation task in the Moving
People, Moving Platform Dataset, however, errors resulted
from misunderstanding the instructions for a particular image
scenario (e.g., a person truncated by the image border). Unless
both of the images presented contain the same scenario(s), the
redundancy of having two images cannot be exploited.

D. Applications
This dataset is intended exclusively for offline training

and testing of person detection and tracking algorithms from
a robot perspective. The use of multiple sensor modalities,
odometry and situational information is encouraged. Some
possible components that could be tested using this dataset
are face detection, person detection, human pose fitting, and
human tracking. Examples of information beyond that offered
by other datasets that could be extracted and used for algorithm
training include the appearances of people in multiple robot
sensors, typical human poses in office environments (e.g.
sitting, standing), illumination conditions (e.g. heavily back-
lit offices with windows), scene features (e.g. ceilings, desks,
walls), and how people move around the robot. This is just a
small sample of the applications for this dataset.

E. Future Work

It is important to take a moment to discuss the possible
constraints on algorithm design imposed by the annotation
format and methodology. Two-dimensional outlines can only
be accurate in the image orientation and resolution. Robots,
however, operate in three dimensions. Given that stereo cam-
era information is noisy, it is unclear how to effectively
project information from a two-dimensional image into the
three-dimensional world. The introduction of more reliable
instantaneous-depth sensors may ameliorate this problem.
However, even a device such as the Microsoft Kinect sen-
sor [17] is restricted to one viewpoint. Algorithms developed
on such a dataset can only provide incomplete information. A
format for three-dimensional annotations that can be obtained
from an untrained workforce is an open area of research.

Short-term work for this dataset will be focused on obtain-
ing additional types of annotations. It would be informative
to have semantic labels for the dataset such as whether the
person is truncated, occluded, etc. and pose information such
as whether the person is standing, sitting, etc. Future datasets
may focus on perceiving people during interaction scenarios
such as object hand-off. Additional data from new sensors,
such as the Microsoft Kinect, would also enhance the dataset.

Finally, an additional interesting dataset could be con-
structed containing relationships between people and objects,
including spatial relationships and human grasps and manipu-
lations of different objects. Object affordances could enhance
the other datasets described in this paper.

III. THE HOUSEHOLD OBJECTS AND GRASPS DATASET

A personal robot’s ability to navigate around and interact
with people can be complemented by its ability to grasp and
manipulate objects from the environment, aiming to enable
complete applications in domestic settings. In this section
we describe a dataset that is part of a complete architecture
for performing pick-and-place tasks in unstructured (or semi-
structured) human environments. The algorithmic components
of this architecture, developed using the ROS framework,
provide abilities such as object segmentation and recognition,
motion planning with collision avoidance, and grasp execution
using tactile feedback. For more details, we refer the reader to
our paper describing the individual code modules as well as
their integration [18]. The knowledge base, which is the main
focus of this paper, contains relevant information for object
recognition and grasping for a large set of common household
objects.

The objects and grasps dataset is available in the form of
a relational database, using the SQL standard. This provides
optimized relational queries, both for using the data on-line
and managing it off-line, as well as low-level serialization
functionality for most major languages. Unlike the dataset
described in the previous section, the Household Objects and
Grasps set is intended for both off-line use during training
stages and on-line use at execution time; in fact, our current
algorithms primarily use the second of these options.

An alternative for using this dataset, albeit indirectly, is
in the form of remote ROS services. A ROS application
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typically consists of a collection of individual nodes, com-
municating and exchanging information. The TCP/IP trans-
port layer removes physical restrictions, allowing a robot to
communicate with a ROS node situated in a remote physical
location. All the data described in this section is used as the
back-end for publicly available ROS services running on a
dedicated accessible server, using an API defined in terms
of high-level application requirements (e.g grasp planning).
Complete information for using this option, as well as regular
downloads for local use of the same data, are available at
http://www.ros.org/wiki/household objects database.

A. Related Work

The database component of our architecture was directly
inspired by the Columbia Grasp Database (CGDB) [19], [20],
released together with processing software integrated with the
GraspIt! simulator [21]. The CGDB contains object shape and
grasp information for a very large (n = 7, 256) set of general
shapes from the Princeton Shape Benchmark [22]. The dataset
presented here is smaller in scope (n = 180), referring only to
actual graspable objects from the real world, and is integrated
with a complete manipulation pipeline on the PR2 robot.

While the number of grasp-related datasets that have been
released to the community is relatively small, previous re-
search provides a rich set of data-driven algorithms for
grasping and manipulation. The problems that are targeted
range from grasp point identification [23] to dexterous grasp
planning [24], [25] and grasping animations [26], [27], to
name only a few. In this study, we are primarily concerned
with the creation and distribution of the dataset itself, and the
possible directions for future similar datasets used as online
or offline resources for multiple robots.

B. Contents and Collection Methodology

One of the guiding principles for building this database
was to enable other researchers to replicate our physical
experiments, and to build on our results. The database was
constructed using physical objects that are generally available
from major retailers (while this current release is biased
towards U.S.-based retailers, we hope that a future release
can include international ones as well). The objects were
divided into three categories: for the first two categories,
all objects were obtained from a single retailer (IKEA and
Target, respectively), while the third category contained a set
of household objects commonly available in most retail stores.
Most objects were chosen to be naturally graspable using a
single hand (e.g. glasses, bowls, and cans); a few were chosen
as use cases for two-hand manipulation problems (e.g. power
drills).

For each object, we acquired a 3D model of its surface (as
a triangular mesh). To the best of our knowledge, no off-the-
shelf tool exists that can be used to acquire such models for
a large set of objects in a cost- and time-effective way. To
perform the task, we used two different methods, each with
its own advantages and limitations:

• for those objects that are rotationally symmetric about an
axis, we segmented a silhouette of the object against a

Fig. 6. Grasp planning in simulation on a database model. Left: the object
model; Middle: grasp example using the PR2 gripper; Right: the complete set
of pre-computed grasps for the PR2 gripper. Each arrow shows one grasp:
the arrow location shows the position of the center of the leading face of
the palm, while its orientation shows the gripper approach direction. Gripper
“roll” around the approach direction is not shown.

known background, and used rotational symmetry to gen-
erate a complete mesh. This method can generate high-
resolution, very precise models, but is only applicable to
rotationally symmetrical objects.

• for all other objects, we used the commercially available
tool 3DSOM (Creative Dimension Software Ltd., U.K.).
3DSOM builds a model from multiple object silhouettes,
and can not resolve object concavities and indentations.

Overall, for each object, the database contains the following
core information:

• the maker and model name (where available);
• the product barcode (where available);
• a category tag (e.g. glass, bowl, etc.);
• a 3D model of the object surface, as a triangular mesh.
For each object in the database, we used the GraspIt!

simulator to compute a large number of grasp points for the
PR2 gripper (shown in Figure 2). We note that, in our current
release, the definition of a good grasp is specific to this gripper,
requiring both finger pads to be aligned with the surface of
the object (finger pad surfaces contacting with parallel normal
vectors) and further rewarding postures where the palm of the
gripper is close to the object as well. In the next section, we
will discuss a data-driven method for relating the value of this
quality metric to real-world probability of success for a given
grasp.

Our grasp planning tool used a simulated annealing opti-
mization, performed in simulation, to search for gripper poses
relative to the object that satisfied this quality metric. For each
object, this optimization was allowed to run over 4 hours, and
all the grasps satisfying our requirements were saved in the
database; an example of this process is shown in Figure 6 (note
that the stochastic nature of our planning method explains the
lack of symmetry in the set of database grasps, even in the case
of a symmetrical object). This process resulted in an average
of 600 grasp points for each object. In the database, each grasp
contains the following information:

• the pose of the gripper relative to the object;
• the value of the gripper degree of freedom, determining

the gripper opening;
• the value of the quality metric used to distinguish good

grasps.
The overall dataset size, combining both model and grasp
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Fig. 7. The PR2 robot performing a grasping task on an object recognized
from the model database.

information, is 76MB uncompressed and 12MB compressed.

C. Annotations and Annotation Methodology

Unlike the other two datasets presented in this paper, the
models and grasps set does not contain any human-generated
information. However, grasp points derived using our au-
tonomous algorithm have one important limitation: they do
not take into account object-specific semantic information or
intended use. This could mean a grasp that places one finger
inside a cup or a bowl, or prevents a tool from being used.
In order to alleviate this problem, an automated algorithm
could take into account more recent methods for considering
intended object use [28]. Alternatively, a human operator could
be used to demonstrate usable grasps [29]. The scale of the
dataset, however, precludes the use of few expert operators,
while a crowd-sourcing approach, similar to one discussed in
the previous section in the context of labeling persons, raises
the difficulty of specifying 6-dimensional grasp points with
simple input methods such as a point-and-click interface.

D. Applications

The database described in this study was integrated in a
complete architecture for performing pick and place tasks on
the PR2 robot. A full description of all the components used
for this task is beyond the scope of this paper. We present here
a high-level overview with a focus on the interaction with the
database; for more details on the other components, we refer
the reader to [18].

In general, a pick-and-place task begins with a sensor image
of the object(s) to be grasped, in the form of a point cloud
acquired using a pair of stereo cameras. Once an object is
segmented, a recognition module attempts to find a match in
the database, using an iterative matching technique similar to
the ICP algorithm [30]. We note that this recognition method
only uses the 3D surface models of the objects stored in the
database. Our data-driven analysis discussed in the next section
has also been used to quantify the results of this method and
relate the recognition quality metric to ground truth results.

If a match is found between the target object and a database
model, a grasp planning component will query the database
for all pre-computed grasp points of the recognized object.
Since these grasp points were pre-computed in the absence

Fig. 8. (Best seen in color) Quantifying grasp robustness to execution errors,
from low (red markers) to high (green markers). Note that grasps in the narrow
region of the cup are seen as more robust to errors, as the object fits more
easily within the gripper.

of other obstacles and with no arm kinematic constraints, an
additional module checks each grasp for feasibility in the
current environment. Once a grasp is deemed feasible, the
motion planner generates an arm trajectory for achieving the
grasp position, and the grasp is executed. An example of a
grasp executed using the PR2 robot is shown in Figure 7.
For additional quantitative analysis of the performance of this
manipulation framework, we refer the reader to [18].

The manipulation pipeline can also operate on novel objects.
In this case, the database-backed grasp planner is replaced by
an on-line planner able to compute grasp points based only
on the perceived point cloud from an object; grasps from
this grasp planner are used in addition to the pre-computed
grasps to generate the Grasp Playpen database described in
the next section. Grasp execution for unknown objects is
performed using tactile feedback in order to compensate for
unexpected contacts. We believe that a robot operating in an
unstructured environment should be able to handle unknown
scenarios while still exploiting high-level perception results
and prior knowledge when these are available. This dual ability
also opens up a number of promising avenues for autonomous
exploration and model acquisition that we will discuss below.

E. Future Work

We believe that the dataset that we have introduced, while
useful for achieving a baseline for reliable pick and place tasks,
can also serve as a foundation for more complex applications.
Efforts are currently underway to:

• improve the quality of the dataset itself, e.g. by using
3D model capture methods that can correctly model
concavities or model small and sharp object features at
better resolution;

• improve the data collection process, aiming to make it
faster, less operator-intensive, or both;

• use the large computational budgets afforded by off-line
execution to extract more relevant features from the data,
which can in turn be stored in the database;

• extend the dataset to include grasp information for some
of the robotic hands most commonly used in the research
community;

• develop novel algorithms that can make use of this data
at runtime;
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• improve the accessibility and usability of the dataset for
the community at large.

One option for automatic acquisition of high-quality 3D
models for a wide range of objects is to use high-resolution
stereo data, able to resolve concavities and indentations, in
combination with a pan-tilt unit. Object appearance data can
be extended to also contain 2D images, from a wide range of
viewpoints. This information can then be used to pre-compute
relevant features, both two- and three-dimensional, such as
SURF [31], PFH [32] or VFH [33]. This will enable the use
of more powerful and general object recognition methods.

The grasp planning process outlined here for the PR2
gripper can be extended to other robot hands as well. For
more dexterous models, a different grasp quality metric can
be used, taking into account multi-fingered grasps, such as
metrics based on the Grasp Wrench Space [34]. The Columbia
Grasp Database also shows how large scale off-line grasp
planning is feasible even for highly dexterous hands, with
many degrees of freedom [19].

The grasp information contained in the database can be
exploited to increase the reliability of object pickup tasks.
An example of relevant off-line analysis is the study of
how each grasp in the set is affected by potential execution
errors, stemming from imperfect robot calibration or incorrect
object recognition or pose detection. Our preliminary results
show that we can indeed rank grasps by their robustness
to execution errors; an example is shown in Figure 8. In
its current implementation, this analysis is computationally
intensive, but it can be performed off-line and the results stored
in the database for online use.

IV. THE GRASP PLAYPEN DATASET

Using the pick and place architecture described in the
previous section, we have set up a framework that we call
the “Grasp Playpen” for evaluating grasps of objects using
the PR2 gripper, and recording relevant data throughout the
entire process. In this framework, the robot performed grasps
of objects from the Household Objects dataset placed at known
locations in the environment, enabling us to collect ground
truth information for object shape, object pose, and grasp
attempted. Furthermore, the robot attempted to not only grasp
the object, but also shake it and transport it around in an
attempt to estimate how robust the grasp is. Such data is
useful for offline training, testing, and parameter estimation
for both object recognition and grasp planning and evalu-
ation algorithms. The Grasp Playpen dataset can be down-
loaded for use at http://bags.willowgarage.com/downloads/
grasp playpen dataset/grasp playpen dataset.html.

A. Related Work

Although there has been a significant amount of research
that uses data from a large number of grasps to either learn
how to grasp or evaluate grasp features, it has generally
not been accompanied by releases of the data itself. For
instance, Balasubramanian et al. [35] use a similar procedure
of grasping and shaking objects to evaluate the importance of
various features used in grasp evaluation such as orthogonality.

Detry et al. [36] execute a large number of grasps with a
robot in order to refine estimated grasp affordances for a small
number of objects. However, none of the resulting data appears
to be publicly available. Saxena et al. [23] have released a
labeled training set of images of objects labeled with the 2-
d location of the grasping point in each image; however, the
applicability of such data is limited. The Semantic Database
of 3D Objects from TU Muenchen [37] contains point cloud
and stereo camera images from different views for a variety
of objects placed on a rotating table, but the objects are not
meshed and the dataset contains no data related to grasping.

B. Contents and Collection Methodology

Each grasp recording documents one attempt to pick up a
single object in a known location, placed alone on a table, as
on the right side of Figure 1. The robot selects a random grasp
by either: 1) trying to recognize the object on the table and
using a grasp from the stored set of grasps for the best detected
model in the Household Objects and Grasps database (planned
using the GraspIt! simulator), or 2) using a grasp from a
set generated by the novel-object grasp planner based on the
point cloud. It then tries to execute the grasp. To estimate
the robustness of the grasp chosen, the robot first attempts
to lift the object off the table. If that succeeds, it will slowly
rotate the object into a sideways position, then shake the object
vigorously along two axes in turn, then move the object off
away from the table and to the side of the robot, and finally
attempt to place it back on the other side of the table. Visual
and proprioceptive data from the robot is recorded during each
phase of the grasp sequence; the robot automatically detects
if and when the object is dropped, and stops both the grasp
sequence and the recording.

In total, the dataset contains recordings of 490 grasps of
30 known objects from the Household Objects and Grasps
Dataset, collected using three different PR2 robots over a 3-
week period. Most of these objects are shown in Figure 9.
Each grasp recording includes both visual and proprioceptive
data. The dataset also contains 150 additional images and point
clouds of a total of 44 known objects from the Household
Objects and Grasps Dataset, including the 30 objects used for
grasping. An example point cloud with its ground-truth model
mesh overlaid is shown in Figure 9. Recorded data is stored
as ROS-format “bag” files, as in the Moving People, Moving
Platform dataset. Each grasp also has an associated text file
summarizing the phase of the grasp reached without dropping
the object, as well as any annotations added by the person.

Each grasp recording contains visual data of the object on
the table prior to the grasp, from two different views obtained
by moving the head:

• Images and point clouds from the narrow FOV,
monochrome stereo cameras (640x480)

• Images from the wide FOV, color stereo cameras
(640x480)

• Images from the gigabit color camera (2448x2050)
• The robot’s head angles and camera frames

During the grasp sequence, the recorded data contains:
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• Narrow and wide FOV stereo camera images (640x480,
1 Hz)

• Grasping arm forearm camera images (640x480, 5 Hz)
• Grasping arm fingertip pressure array data (25 Hz)
• Grasping arm accelerometer data (33.3 kHz)
• The robot’s joint angles (1.3 kHz)
• The robot’s camera and link frames (100 Hz)
• The requested pose of the gripper for the grasp

The average size of all the recorded data for one grasp
sequence (compressed or uncompressed) is approximately 500
MB; images and point clouds alone are approximately 80 MB.

C. Annotations and Annotation Methodology

The most important annotations for this dataset contain the
ground-truth model ID and pose for each object. Each object
is placed in a randomly-generated, known location on the table
by carefully aligning the point cloud for the object (as seen
through the robot’s stereo cameras) with a visualization of
the object mesh in the desired location. The location of the
object is thus known to within operator precision of placing
the object, and is recorded as ground truth.

Further annotations to the grasps are added to indicate
whether the object hit the table while being moved to the side
or being placed, whether the object rotated significantly in the
grasp or was placed in an incorrect orientation, and whether
the grasp was stopped due to a robot or software error.

D. Applications

The recorded data from the Grasp Playpen Dataset is
useful for evaluating and modeling the performance of object
detection, grasp planning, and grasp evaluation algorithms.

For the ICP-like object detection algorithm described in
section III-D, we have used the recorded object point clouds
along with their ground-truth model IDs (and the results of
running object detection) to create a model for how often
we get a correct detection (identify the correct object model
ID) for different returned values of the detection algorithm’s
“match error,” which is the average distance between each
stereo point cloud point and the proposed object’s mesh. The
resulting Naive Bayes model is shown in Figure 10, along
with a smoothed histogram of the actual proportion of correct
detections seen in the Grasp Playpen Dataset.

For the GraspIt! quality metric described in section III-B,
we have used the grasps that were actually executed, along
with whether they were successful or not (and GraspIt!’s
estimated grasp quality for those grasps, based on the ground-
truth model and pose), to model how often grasps succeed or
fail in real life for different quality values returned by GraspIt!.
Histogrammed data from the Grasp Playpen Dataset is shown
in Figure 11, along with the piecewise-linear model for grasp
quality chosen to represent it.

We have also used just the recorded object point clouds to
estimate how well other grasp planners and grasp evaluation
algorithms do on real (partial) sensor data. Because we have
the ground truth model ID and pose, we can use a geometric
simulator such as GraspIt! to estimate how good an arbitrary
grasp is on the true object geometry. Thus, we can ask a

Fig. 9. (left) A subset of the objects used in the Grasp Playpen Dataset’s
grasp recordings. (right) The point cloud for a non-dairy creamer bottle, with
the appropriate model mesh overlaid in the recorded ground-truth pose.
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Fig. 10. Correct object recognition rates vs. the object detector’s match error
(average point distance) for our object recognizer. The blue line shows data
from the grasp playpen dataset; the black line shows the Naive Bayes model
chosen to approximate it.

new grasp planner to generate grasps for a given object point
cloud, and then evaluate in GraspIt! how likely that grasp
is to succeed (with energy values translated into probabilities
via the model described above). Or we can generate grasps
using any grasp planner or at random, and ask a new grasp
evaluator to say how good it thinks each grasp is (based on
just seeing the point cloud), and again use the ground truth
model pose/geometry to compare those values to GraspIt!’s
success probability estimates. This allows us to generate data
on arbitrarily large numbers of grasps, rather than just the
490 recorded grasps; we have used this technique ourselves to
evaluate new grasp planners and evaluators, as well as to create
models for them and perform feature-weight optimization.

E. Future Work

Because we use random grasps planned using our available
grasp planners to grasp the objects presented to the robot, and
because those grasps tend to be of high quality, approximately
90% of the grasps in the dataset succeed in at least lifting the
object. Thus, although the data is useful for differentiating very
robust grasps from only marginal grasps, we would require
more data on grasp failures to better elucidate the difference
between marginal and bad grasps. In the future, we plan to
obtain data for more random/less good grasps. We also plan to
obtain data for more complex/cluttered scenes than just single
objects on a table.

Other planned or possible uses of the data include:
• testing object recognition and pose estimation algorithms;
• trying to predict when a collision has occurred based on

the recorded accelerometer data from grasps in which the
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Fig. 11. Experimental grasp success percentages vs. GraspIt!’s grasp quality
metric for the PR2 gripper. The blue line shows binned data from all 490
grasps in the grasp playpen dataset; the black line shows the piecewise-linear
model chosen to approximate it. Blue error bars show 95% confidence on the
mean, computed using bootstrap sampling.

object hit the table;
• testing in-hand object tracking algorithms;
• learning graspable features and weights for grasp features

from image and point cloud data;
Obtaining grasp recordings by manually placing objects

in the manner used for the Grasp Playpen Dataset is a
fairly labor-intensive method. Killpack and Kemp have re-
cently released code and the mechanical design for a PR2
playpen [38] that allows one to record grasps using the PR2 in
a semi-automated fashion. Currently there is no mechanism for
determining the ground-truth pose of the object being grasped,
which is necessary for many of the proposed applications of
the Grasp Playpen Dataset. However, automatically-generated
grasp recordings, if done with objects with known models,
could be annotated using Mechanical Turk, using a tool that
allows a person to match and pose the correct object model.

V. DISCUSSION AND CONCLUSIONS

The datasets discussed in this paper are united by the ROS
framework, their collection via the PR2 platform and their
applicability to indoor home and office scenarios. The datasets’
applications, however, force them to differ in multiple ways.

The Moving People, Moving Platform dataset is intended
to be used in an off-line knowledge transfer context. In other
words, robots are meant to utilize the data in batch format to
train person-detection algorithms, and then once again in batch
format to evaluate these algorithms. This off-line mechanism
implies that access speed and dataset size are not of primary
importance when considering the dataset format and contents.
This allows the data to be presented in its raw, loss-less format.
Off-line training is best performed with large amounts of data
and annotation, and the nature of the annotations in this case
required human input. These factors led to using humans in
a crowd-sourced environment as a source of annotations. All
of these requirements were met within the ROS framework by
using ROS bag files and providing the data on the Internet for
batch download.

The Household Objects and Grasps Dataset is primarily
used in an on-line knowledge transfer context. This implies
that the format and contents need to support fast random
access, both in retrieving the data from the Internet and

accessing individual data elements within the dataset. Thus,
the data is stored in a relational database. The information is
also compressed whenever possible, to grasp points or object
meshes instead of full object images or scans. Computing
grasp points appropriate to a robot is performed automatically
and off-line using the GraspIt! simulator. No additional an-
notations from human sources are provided. The relational
database containing this dataset has an interface within the
ROS framework, allowing a running robot system to access
the data on-line.

The Grasp Playpen Dataset provides an additional venue
for grasp information, but this time the knowledge transfer is
intended to happen in an off-line context. As in the Moving
People, Moving Platform Dataset, the data does not need
to be accessed quickly, and the size of the dataset is less
important. This allows for storage in raw format in ROS bags,
and the contents are less restricted, including images, point
clouds, and additional sensor data for later exploration. Finally,
given the broader potential uses of this dataset, the source
of annotations is both automatic, generated by the robot as
it successfully or unsuccessfully manipulates an object, and
manual, with human annotations in text files. Once again, the
data is available for batch download and can be viewed within
the ROS framework.

The knowledge transfer context, the format and contents
of the data, and the source of annotations are only some
of the important characteristics of robotic datasets. We have
expanded on them in this study as they are particularly
relevant to the releases presented here; there are, however,
a number of additional issues to consider when designing
datasets. An incomplete list includes the following: are there
other communities who could offer interesting input into the
data, such as the computer vision community for the Moving
People, Moving Platform dataset? What is the correct accuracy
level? Can the dataset be easily expanded? Is it possible to
add in additional sensor modalities or annotation modalities,
perhaps in the way that the Grasp Playpen dataset extends
the Household Objects and Grasps dataset? Does the data
reflect the realistic conditions in which a scenario will be
encountered? Can the objects in the Household Objects dataset
be recognized in clutter, or do people normally act as they do
in the Moving People dataset? Finally, does there need to be
a temporal component to the data, such as people or objects
appearing differently at night versus during the day? This is
only a small sample of the questions which should be asked.

Dataset collection and annotation for mobile robots is
typically a time and resource-intensive task, and the datasets
presented here are no exception. Furthermore, obtaining such
datasets requires access to a robot such as the PR2, which are
not available to everyone. In light of the effort and resources
required, we hope that by releasing these datasets, we can
allow others to access useful data for their own research that
they would not otherwise be able to obtain.

A particularly compelling direction of research considers
the possibility of robots automatically augmenting and sharing
datasets as they operate in their normal environments. People
regularly draw on online information when faced with a
new environment, getting data such as directions and product
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information from ubiquitous mobile communication devices.
In a similar way, robots can share their experiences in an online
fashion, and some of the technology described in this paper
can enable this exchange. For example, a robot can regularly
collect sensor data from its surroundings, use a crowd-sourcing
method to annotate it, and contribute it back to the Moving
People, Moving Platform dataset.

The grasping pipeline presented here can serve as a founda-
tion for fully automatic model acquisition: a robot can grasp a
previously unseen object, inspect it from multiple viewpoints,
and acquire a complete model, using techniques such as the
ones presented in [39]. A robot could also learn from past
pick-up trials. Additional meta-data, such as object classes,
labels, or outlines in sensor data can be obtained on-line using
a crowd-sourcing similar to the one used for the Moving
People, Moving Platform dataset. Visual and proprioceptive
information from any attempted grasp can be added to the
Grasp Playpen set. Numerous other possibilities exist as we
move towards a set of online resources for robots.

Dataset design is a complex subject, but collecting and
presenting data in an organized and cohesive manner is key
to progress in robotics. The datasets presented in this paper
are a small step toward useful mobile manipulation platforms
operating in human environments. By continuing to collect and
distribute data in open formats such as ROS, a diverse array
of future algorithms and robots can learn from experience.

REFERENCES

[1] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source Robot Operating System,”
in Intl. Conf. on Robotics and Automation, 2009.

[2] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot
genes,” Robotics and Autonomous Systems, vol. 56, no. 1, pp. 29–45,
2008.

[3] “ROS Wiki,” http://www.ros.org.
[4] Willow Garage, “The PR2,” http://www.willowgarage.com/pages/pr2/

overview.
[5] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman, “The Pascal Visual Object Classes (VOC) Challenge,”
Intl. Journal of Computer Vision, vol. 88, no. 2, pp. 303–338, June 2010.
[Online]. Available: http://pascallin.ecs.soton.ac.uk/challenges/VOC/

[6] C. Pantofaru, “The Moving People, Moving Platform Dataset,” http:
//bags.willowgarage.com/downloads/people dataset.html, 2010.

[7] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human
Detection,” in IEEE conference on Computer Vision and Pattern Recog-
nition (CVPR), 2005.

[8] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua, “Multi-Camera People
Tracking with a Probabilistic Occupancy Map,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 30, no. 2, pp. 267–282, February
2008.

[9] M. Tenorth, J. Bandouch, and M. Beetz, “The TUM Kitchen Data Set
of Everday Manipulation Activities for Motion Tracking and Action
Recognition,” in IEEE Int’l Workshop on Tracking Humans for the
Evaluation of their Motion in Image Sequences (THEMIS), 2009.

[10] “CMU Graphics Lab Motion Capture Database,” http://mocap.cs.cmu.
edu/.

[11] L. Sigal, A. Balan, and M. Black, “HumanEva: Synchronized Video
and Motion Capture Dataset and Baseline Algorithm for Evaluation of
Articulated Human Motion,” International Journal of Computer Vision,
vol. 87, 2010.

[12] M. Enzweiler and D. M. Gavrila, “Monocular Pedestrian Detection:
Survey and Experiments,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 31, no. 12, pp. 2179–2195, 2009. [Online].
Available: http://www.gavrila.net/Research/Pedestrian Detection/
Daimler Pedestrian Benchmark D/Daimler Pedestrian Detection B/
daimler pedestrian detection b.html

[13] P. Dollár, C. Wojek, B. Schiele, and P. Perona, “Pedestrian
Detection: A Benchmark,” in IEEE Intl. Conf. on Computer
Vision and Pattern Recognition, June 2009. [Online]. Available:
http://www.vision.caltech.edu/Image Datasets/CaltechPedestrians/

[14] C. Pantofaru, “User Observation & Dataset Collection for Robot Train-
ing,” in ACM/IEEE Conference on Human-Robot Interaction (HRI),
2011.

[15] “Amazon Mechanical Turk,” https://www.mturk.com.
[16] L. von Ahn, B. Murer, C. McMillen, D. Abraham, and M. Blum,

“reCAPTCHA: Human-Based Character Recognition via Web Security
Measures,” Science, vol. 321, pp. 1465–1468, September 2008.

[17] Microsoft Corp., “Kinect for Xbox 360.”
[18] M. Ciocarlie, K. Hsiao, E. Jones, S. Chitta, R. B. Rusu, and I. A.

Sucan, “Towards Reliable Grasping and Manipulation in Household
Environments,” in Intl. Symp. on Experimental Robotics, 2010.

[19] C. Goldfeder, M. Ciocarlie, H. Dang, and P. Allen, “The Columbia Grasp
Database,” in Intl. Conf. on Robotics and Automation, 2009.

[20] C. Goldfeder, M. Ciocarlie, J. Peretzman, H. Dang, and P. Allen, “Data-
Driven Grasping with Partial Sensor Data,” in Intl. Conf. on Intelligent
Robots and Systems, 2009.

[21] A. Miller and P. K. Allen, “GraspIt!: A Versatile Simulator for Robotic
Grasping,” IEEE Rob. and Autom. Mag., vol. 11, no. 4, 2004.

[22] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The Princeton
Shape Benchmark,” in Shape Modeling and Applications, 2004.
[Online]. Available: http://dx.doi.org/10.1109/SMI.2004.1314504

[23] A. Saxena, J. Driemeyer, and A. Ng, “Robotic Grasping of Novel Objects
using Vision,” International Journal of Robotics Research, vol. 27, no. 2,
pp. 157–173, 2008.

[24] A. Morales, T. Asfour, P. Azad, S. Knoop, and R. Dillmann, “Integrated
Grasp Planning and Visual Object Localization for a Humanoid Robot
with Five-Fingered Hands,” in Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2006.

[25] Y. Li, J. L. Fu, and N. S. Pollard, “Data-Driven Grasp Synthesis Using
Shape Matching and Task-Based Pruning,” IEEE Trans. on Visualization
and Computer Graphics, vol. 13, no. 4, pp. 732–747, 2007.

[26] Y. Aydin and M. Nakajima, “Database Guided Computer Animation of
Human Grasping Using Forward and Inverse Kinematics,” Computers
and Graphics, vol. 23, 1999.

[27] K. Yamane, J. Kuffner, and J. Hodgins, “Synthesizing Animations of
Human Manipulation Tasks,” ACM Transactions on Graphics, vol. 23,
no. 3, 2004.

[28] D. Song, K. Huebner, V. Kyrki, and D. Kragic, “Learning Task Con-
straints for Robot Grasping using Graphical Models,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems, 2010.

[29] C. de Granville, J. Southerland, and A. Fagg, “Learning Grasp Affor-
dances through Human Demonstration,” in Intl. Conf. on Development
and Learning, 2006.

[30] P. J. Besl and M. I. Warren, “A Method for Registration of 3-D Shapes,”
IEEE Trans. on Pattern Analysis, vol. 14, no. 2, pp. 239–256, 1992.

[31] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “SURF: Speeded Up
Robust Features,” Computer Vision and Image Understanding, vol. 110,
no. 3, 2008.

[32] R. B. Rusu, N. Blodow, and M. Beetz, “Fast Point Feature
Histograms (FPFH) for 3D Registration,” in Intl. Conf. on Robotics
and Automation, 2009. [Online]. Available: http://files.rbrusu.com/
publications/Rusu09ICRA.pdf

[33] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3D Recognition
and Pose Using the Viewpoint Feature Histogram,” in Intl. Conf. on
Intelligent Robots and Systems, 2010.

[34] C. Ferrari and J. Canny, “Planning Optimal Grasps,” in IEEE Intl. Conf.
on Robotics and Automation, 1992, pp. 2290–2295.

[35] R. Balasubramanian, L. Xu, P. Brook, J. Smith, and Y. Matsuoka,
“Human-Guided Grasp Measures Improve Grasp Robustness on a Phys-
ical Robot,” in ICRA, 2010.

[36] R. Detry, E. Baseski, M. Popovic, Y. Touati, N. Krueger, O. Kroemer,
J. Peters, and J. Piater, “Learning Object-specific Grasp Affordance
Densities,” in Intl. Conf. on Development and Learning, 2009.

[37] M. Tenorth, J. Bandouch, and M. Beetz, “The TUM Kitchen Data Set
of Everyday Manipulation Activities for Motion Tracking and Action
Recognition,” in IEEE Int. Workshop on Tracking Humans for the
Evaluation of their Motion in Image Sequences (THEMIS), held in
conjunction with ICCV, 2009.

[38] M. Killpack and C. Kemp, “ROS wiki page for the pr2 playpen
package,” http://www.ros.org/wiki/pr2 playpen.

[39] M. Krainin, P. Henry, X. Ren, and D. Fox, “Manipulator and Object
Tracking for In Hand Model Acquisition,” in Intl. Conf. on Robotics
and Automation, 2010.


