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Abstract—Unstructured human environments present a sub-
stantial challenge to effective robotic operation. Mobile manip-
ulation in typical human environments requires dealing with
novel unknown objects, cluttered workspaces, and noisy sen-
sor data. We present an approach to mobile manipulation in
such environments using a combination of 2D and 3D visual
processing, tactile and proprioceptive sensor data, fast motion
planning, reactive control and monitoring, and reactive grasping.
Our approach allows a robot to perform the full range of
operations required for mobile manipulation. We demonstrate
our approach by using a two-arm mobile manipulation system
to pick and place objects. Our approach attempts to maximize
safety and robustness by continuously monitoring the task using
visual sensors and replanning or aborting the task if necessary.
Furthermore, reactive components attempt to correct the desired
plan when presented with unexpected information from the
changing environment.

I. INTRODUCTION

Human environments provide incredible challenges for ef-
fective mobile manipulation. The remarkable dexterity and
mobility of humans results in environments where tasks re-
quire a high degree of flexibility in perception, motion, and
control that robots currently lack. Large variations in objects,
lighting, and clutter make household manipulation a very
difficult problem. Most households have very limited space
for robots to move around in, and objects are often hidden in
clutter, behind other objects, or inside containers. Furthermore,
with humans moving around in the environment, safety is
an important consideration for any household manipulation
robot. Mobile manipulation in such environments will require
a tightly-integrated effort, combining techniques in perception,
motion planning, grasping, and control.

Significant progress has been made in recent years in
advancing the state of the art in mobile manipulation. Mobile
manipulation platforms such as the PR2(see Fig. 1), Intel
HERB Personal Robot, ICub, and ASIMO, have a combination
of high resolution sensors and computation useful for realtime
operation in human environments. Realtime 3D sensing using
a combination of stereo and laser ranging sensors is often
used in such systems to build a consistent representation
of their changing environments. However, visual information
is often not sufficient for robust operation; robustness can
be increased with the addition of tactile and proprioceptive
feedback. Safe, collision-free motion can be achieved by
combining fast realtime motion planning with smooth reactive
controllers.

In this paper, we present an integrated approach to manipu-
lation and grasping in household environments. Our approach
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Fig. 1. The PR2 (right) and the Care-O-Bot (left). Both robots are executing
a tabletop pick and place task using the approach described in this paper.

starts by building a consistent model of the environment using
input from both 3D and 2D visual sensors. The environment is
represented using a combination of pre-generated mesh models
for known objects and a voxel-based representation for the
other parts of the environment. The environment representation
serves as input to motion planners that generate collision-
free, smooth motions for the robot. Fast realtime trajectory
controllers are used to perform the planned trajectories on the
robot. Grasp selection for objects consists either of selection
of an appropriate grasp from a set of grasps pre-computed
offline, or computation of grasps online.

The approach presented here builds on earlier work in [1],
adding several new components. This includes the ability to
track the motion of the manipulator and to react to unforeseen
events or obstacles in the environment using visual sensing,
and the ability to navigate while carrying larger objects in
a cluttered indoor environment. We also describe a new
grasp planner that is capable of accounting for uncertainty
arising from noisy calibration, segmentation, or recognition.
We demonstrate our approach through various tasks performed
by the PR2 mobile manipulation system, but also describe
new tools that allow many of these capabilities to be quickly
adapted for mobile manipulation systems other than the PR2.
Our approach allows robots to pick and place a wide range of
objects in unstructured environments.

A. Related Work

Mobile manipulation has gained widespread recent interest (
[2]–[8]). The Intel HERB mobile manipulation platform has
demonstrated impressive capabilities in indoor environments
ranging from being able to pick and place objects [8] to
push-based manipulation on tabletop environments [9]. The
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platform has also been used to demonstrate advances in
constrained-manipulation planning [10], trajectory optimiza-
tion based planning [3] and planning under uncertainty [11].
The DLR Justin robot has demonstrated exceptional manipu-
lation capabilities, including the ability to catch balls [12] and
make coffee. The ARMAR-III robots have been used for tasks
in a prototype kitchen setting demonstrating impressive capa-
bilities including combined grasp and motion planning [13].
Other examples of integrated mobile manipulation systems that
have demonstrated autonomous behavior include El-E [14],
STAIR [15], Care-O-Bot [16].

Several groups have demonstrated mobile manipulation
tasks with the PR2 robot, including laundry tasks [17] and
making breakfast [18]. Additional mobile manipulation tasks
such as cart pushing [19] and door opening [20], [21] have
demonstrated capabilities that require co-ordinated motion of
the base and arms of a robot.

Progress in sensing, motion planning, control, grasping,
and perception has significantly improved the capabilities
of mobile manipulation systems. Fast motion planners now
allow robots to react quickly in dynamically changing envi-
ronments [2]. Reactive controllers can minimize the effects
of unknown obstacles or events in the environment [22].
Reactive grasp control [23] allows for correction from errors
due to inaccurate or noisy data from visual sensors, calibration
errors, or inaccurate pose estimation by object recognition
algorithms. Reactive planning frameworks like the elastic
roadmap framework [24] allow planning and control to be
closely integrated.

B. Structure of this paper

This paper is structured as follows: In Section II, we give
an overview of our approach and the robot that we use for
experiments in Section II. In Section III, we present details on
the motion planning, control, and execution components used
in our approach. In Section IV, we expand on our approach
to grasping. Section V details our efforts to make tools that
allow for easy portability of our approach to different mobile
manipulation platforms. Finally, Section VI presents experi-
mental results and applications of our approach to different
mobile manipulation tasks.

II. OVERVIEW

A motivating task that we have used throughout our work is
mobile pick and place, i.e. the ability to pick up objects and
move them to new locations in an environment. Our aim is
to develop an approach to this task that is particularly suited
for unstructured environments. Towards this end, our approach
makes extensive use of information from the sensors of the
robot to model the environment online. We also intend for our
approach to be easily deployable on different mobile manip-
ulation systems. To that end, we have developed a software
framework (built on ROS [25]) and a set of software tools
that make porting our approach to other mobile manipulation
systems much easier. Our framework is also modular, with the
intention of allowing incorporation of alternate components for
motion planning, control, grasping, or perception.

The mobile manipulation platform that we use for validat-
ing our approach is the PR2 (Fig. 1), which has an omni-
directional base and two 7-DOF arms. It is equipped with a
tilting laser scanner mounted on the body; two stereo cameras
and a texture projector are mounted on a pan-tilt platform
(the head). An additional laser scanner mounted on the base
and a body-mounted IMU are used extensively for localization
and navigation. Encoders on each joint provide joint angle
information. The end-effector is a parallel jaw gripper whose
fingertips are equipped with capacitive sensor arrays, each
consisting of 22 individual cells; the gripper also contain an
accelerometer. For some of our work, we have also utilized
an additional RGBD sensor (a Microsoft Kinect R©) mounted
on the head of the robot.

Our approach builds on the ROS software framework,
utilizing it for all communication and configuration needs.
Generic interfaces are defined between different components in
our framework as ROS interfaces. Any new component, e.g. a
new grasp planning algorithm, can be easily incorporated into
the system if it implements the same interface. For example,
several groups have been able to integrate their custom motion
planners within our framework for execution on the PR2
robot. This includes CHOMP [26], Search-based planners [27],
Learning dimensional descent [28], and STOMP [29].

Our overall approach to the pick and place task involves
environment modeling using 2D and 3D visual sensors on the
robot, deliberative planning using motion planners, reactive
control using active sensing, and grasp planning and execution
for known and unknown objects while taking uncertainty
into account. We will now describe in detail the individual
components that make up our framework and the integration
required to successfully execute manipulation tasks.

III. ENVIRONMENT MODELING, MOTION PLANNING AND
EXECUTION

Our approach to motion planning and execution builds
on online modeling of the environment, randomized motion
planners, and the use of visual sensors for dealing with
disturbances. Our focus is on developing a reliable framework
for moving the robot while taking into account any obstacles
that may be present in the environment. We also aim to
account for possible disturbances during execution by either
pausing and re-executing planned trajectories or replanning
when necessary.

A. Environment Modeling

Building a consistent and detailed model of the environment
is essential for any operation in an unstructured environment.
The process starts with raw sensor data from 3D visual sensors
(e.g. laser range scanners, stereo cameras, or RGBD sensors)
in the form of point clouds. Data from these sensors is first
passed through a series of filters. An initial filter attempts to re-
move spurious data points that can often appear in point cloud
data, especially those associated with depth discontinuities in
the scene. A second filter uses knowledge of the position of
the robot parts to filter out sensor data corresponding to sensor
hits on the robot’s parts. The resulting point cloud is less noisy
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Fig. 2. Raw sensor data (a) is filtered to remove spurious points (b) and
points associated with the robot body (c). Note that the object held in the
hand is also considered a part of the robot body. (This figure is best viewed
in color).

than the original data and includes only data corresponding to
the environment. A series of snapshots in Fig. 2 illustrate this
process.

The environment model uses two representations: a prob-
abilistic occupancy grid representation for unmodeled or un-
recognized parts of the environment and a semantic repre-
sentation for known parts of the environment. The semantic
representation is built using a generic, ROS-based interface
to object segmentation and detection algorithms. Our current
implementation of these algorithms operates on the filtered
3D point clouds to segment support surfaces (such as tables
or shelves) and objects on the support surfaces. A database
of pre-built 3D models for common household objects is then
used to recognize and register some of the objects in the scene.
Mesh models of these objects are used to represent them in the
environment model. More details of this process are explained
in the section on grasping (Section IV).

Unmodeled parts of the environment are incorporated into
an octree-based representation (called Octomap) [30]. Oc-
tomap is an occupancy-grid-like probabilistic representation
of the environment that can account for unknown space, i.e.
space that has not been observed by the robot’s sensors. It also
maintains a persistent view of the environment, automatically
incorporating new sensor data and clearing out obstacles that
might have moved away. The environment model serves as
the primary source of input for collision checking and is used
by both the motion planning and grasping components. Fig. 3
illustrates a typical environment generated using this process.

B. Motion Planning and Execution
An overall schematic representation of our motion planning

and execution framework used for the robot’s arm is shown
in Fig. 4. The particular implementation we describe here
is intended for use with robotic arms. Motion planning and
execution for the base is decoupled from that for the arms,
and is described in Section III-C. Future work will involve
the development of components for whole-body planning and
control.

Fig. 3. A typical environment model for a tabletop manipulation task. (This
figure is best viewed in color).

Fig. 4. System architecture for motion planning and execution.

Motion planning for the arms is carried out using random-
ized motion planners integrated using the OMPL Library [31].
These motion planners can operate on both joint space or end-
effector pose goals. Inverse kinematics is used in the latter
case to sample joint-space goals that the planner can then
plan to. The output of the motion planner is a path that can
often be jagged and long. The path is refined and parametrized
in time using shortcutting techniques designed for smoothing
and shortening the path. Our particular implementation of
shortcutting uses cubic splines and can account for bounds
on joint velocities and accelerations.

Each arm of the PR2 has 7 degrees of freedom and thus has
a redundant degree of freedom. We exploit this redundancy
by developing a custom inverse kinematics solution for the
arm that is parametrized by one of the joint angles. The joint
limits on the robot’s joints are also taken into account by the
kinematics solver. Thus, given the end-effector pose and a
value for the free parameter, we can deterministically compute
the corresponding inverse kinematics solution for this pose. In
general, because of joint limits, we tend to find only a single
solution (if it exists) for a given end-effector pose and free
angle parameter. If a solution does not exist, it is possible to
step through the full range of motion of the redundant joint
to search for an inverse kinematics solution. For robots other
than the PR2, we provide an implementation of a numerical
inverse kinematics solver based on the KDL toolchain [32].

Execution of trajectories is handled using a state machine
approach that incorporates active monitoring of the trajectories
executed on the arm. A controller designed to accurately track
the desired trajectory is used to execute the planned trajectory
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Fig. 5. Active Monitoring: The PR2 starts to execute a trajectory(a). A new
obstacle is introduced into the environment(b) and further trajectory execution
is aborted in (c) and (d). The obstacle is moved away in (e). The PR2 executes
the remaining part of the trajectory once the object has cleared away in (f),
(g) and (h).

on the robot. Active monitoring involves moving the head of
the robot (on which the sensors are mounted) to maintain
visibility of the arm as it is executing the trajectory. If a new
obstacle is detected along the expected execution path, the
arm is brought to a stop along the path. If the obstacle clears
out of the path of the robot within a specified timeout, the
trajectory continues to be executed. If the timeout is exceeded,
a new path is planned and executed, taking into account the
presence of the new obstacle. Fig. 5 shows two snapshots from
a scenario where the robot stops when it sees a new obstacle,
waits for the obstacle to clear, and then re-executes its planned
path [33].

The motion planners can also handle geometric constraints,
e.g. constraints on the position and orientation of a grasped
object. A constraint that is often specified in manipulation
tasks is to keep an object horizontal, e.g. if it contains liquids.
Such constraints can be dealt with using projection techniques
that attempt to project a random sample onto the constraint
manifold [10]. However, we choose to take a simpler approach
to such constraint planning by working directly in task space,
i.e. in the space of position and orientation of the end-effector
of the robot. The planner now functions in a 7 dimensional
space: (x, y, z, roll, pitch, yaw, φ). Here (x, y, z, ) represents
the position of the end-effector, (roll, pitch, yaw) represents
the orientation of the end-effector in a coordinate frame at-
tached to the base of the robot, and φ represents the redundant
degree of freedom in the 7-DOF PR2 arm. In this space, an
orientation constraint on the gripper can be easily accounted

(a) (b)

(c) (d)

Fig. 6. A constrained motion plan being executed by the PR2 robot. Note
that the object is kept close to horizontal throughout the plan.

Fig. 7. Left: The PR2 robot needs to move its base underneath the table and
its arms above to pick up a basket. In a standard 2D navigation approach,
the robot’s footprint is in collision with a projected 2D costmap, and thus the
corresponding planning problem would be unsolvable. Right: A multi-layer
representation for the PR2 consists of projected layers for the base (green),
spine (red), and arms (blue) in addition to a full 3D collision map. This
allows for efficient collision checks while considering the 3D structure of the
environment and the robot. (This figure is best viewed in color).

for by placing appropriate bounds on the roll, pitch and yaw
states of the end-effector, and thus the constraints are easily
accounted for in the sampling stage for randomized planners.
Fig. 6 shows the result of a constrained plan executed on the
robot while carrying out a tabletop manipulation task [33].

C. 3D navigation

True mobile manipulation requires the ability to navigate
through a cluttered environment while carrying objects. Tra-
ditional navigation approaches typically use a projected 2D
footprint and cannot handle, for instance, cases where a robot
might have to move its arms over a table while carrying
an object (Fig. 7). Environment sensing also becomes harder
during such actions, since the object and the arms of the robot
occlude the view of the sensors.

In [34], we presented an approach to this problem (which we
label 3D navigation). The approach combines a representation
of large-scale environments using Octomap with a hierarchical
collision checking scheme integrated with anytime motion
planners. The approach used multi-layered 2D costmaps and
a layered decomposition of the robot body (Fig. 7) to reduce
the number of full-body 3D collision checks required during
planning, thus providing motion plans within reasonable times
in cluttered environments. The approach was successfully
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Fig. 8. Sequence of snapshots showing the PR2 robot navigating au-
tonomously with a laundry basket in a cluttered environment.

implemented on the PR2 robot, thus allowing it to navigate
with a large object(a laundry basket) in a cluttered environ-
ment (Fig. 8). Note that our current implementation of 3D
navigation does not account for (or plan for) the arms moving
while the base is also in motion. It also does not plan the
grasps for large objects like the laundry basket. Future work
is intended for developing whole-body grasping capabilities.

IV. GRASPING

We define grasping as the ability to secure an object inside
the robot’s end-effector while resisting external disturbances. It
is a key prerequisite for enabling a large number of mobile ma-
nipulation tasks, such as object transport and retrieval, tool use,
etc. Robotic grasping is common in industrial environments,
where pick-and-place robots are able to execute grasps with a
high degree of reliability. However, this level of performance is
usually achieved by taking advantage of the structure inherent
in industrial settings: a small and well-defined set of objects
to be manipulated, which allows for the design of dedicated
end-effectors for known object poses. In environments lacking
this kind of structure, such as typical homes or offices, robotic
grasping is still an open area of research.

We believe two of the key problems that must be addressed
for robust grasping in unstructured environments are variabil-
ity, requiring the ability to handle a very large set of possible
objects and scenarios, and uncertainty, requiring the ability
to cope with errors affecting many levels of the system from
sensing and scene interpretation to mechanism calibration. In
this section, we describe our initial work on grasp planning
and execution for a wide range of typical household objects,
followed by the methods we developed in order to improve

Fig. 9. Cluster-based grasp planning. Top row: individual object point
clouds (red points) and grasps (red arrows) associated with them. Bottom
row: execution of planned grasps.

their handling of uncertainty and hence the overall reliability
of the system.

A. Grasp Planning and Execution

The ability to plan a grasp for an object depends on
the nature and quality of information available to the grasp
planner. In environments such as households or offices, the
grasp planner receives this information from a perception
module that attempts to parse and label the scene. While scene
interpretation algorithms are constantly improving, they still
can not achieve perfect reliability in general human settings.
We believe that a robot must be equipped to both use high-level
perception results when possible, and cope with situations
when less information is available.

1) Cluster-based Planner: The first grasp planning al-
gorithm we present operates on individual point clouds of
graspable objects. It requires that a point cloud from a depth
camera, such as the Microsoft Kinect R© or the PR2 stereo pairs,
be separated in individual “clusters”, each belonging to one
target object.

Our reference implementation of the perception module
associated with this planner makes a set of assumptions
exploiting the fact that household objects are typically found
on flat surfaces such as table or counter tops. We compute a
planar fit to the point cloud to identify the support surface, and
then use Euclidean clustering on the points above it to obtain
individual object clusters. This perception mechanism is not
equipped to handle cluttered scenes; however, more advanced
algorithms that also use color information in order to segment
cluttered or stacked objects, such as the one presented by
Bjorkman and Kragic [35], can also be used as input to our
planner.

Once an object’s point cloud has been segmented, grasps
are computed using heuristics based on both the overall shape
of the object and its local features. The intuition behind this
approach is that many human-designed objects can be grasped
by aligning the hand with the object’s principal axes, starting
from either above or to the side of the object, and searching
for parts of the object that fit inside the hand; if no such grasps
are found, then grasps from above of high points on the object
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Fig. 10. Grasp planning in a simulated environment for a known object
(the object model, a simulated grasp and the complete set of pre-computed
grasps).

are also likely to be useful. Grasps found according to these
principles are then ranked using a small set of simple feature
weights, including the number of sensed object points that fit
inside the gripper, distance from object center, etc. A number
of examples are shown in Fig. 9, and additional information
about this component can be found in [23].

2) Recognition-based Database Planner: If an object
recognition component is present as part of the robot’s per-
ception toolset, additional information regarding a recognized
model can be pulled from a database of known objects.
Complementing the methods and algorithms discussed here,
we have introduced a database of common household ob-
jects available from major U.S. retailers. For each object,
the database contains a triangular surface mesh, as well as
additional tags such as maker and model, barcode, class labels,
etc. This dataset, described in detail in [36], is available as a
relational database using the SQL standard.

When the target is a recognized database object, the robot
can plan grasps using the complete object mesh. Furthermore,
grasps for each object can be pre-computed in advanced and
also stored in the database. For each object in the database,
we used the GraspIt! simulator [37] to pre-compute a large
number of grasp points for the PR2 gripper. We used a grasp
quality function requiring both finger pads to be aligned with
the surface of the object (finger pad surfaces contacting with
parallel normal vectors) and further rewarding postures where
the palm of the gripper is close to the object as well. However,
the grasp planning process outlined here for the PR2 gripper
can be extended to other robot hands as well. For more
dexterous models, a different grasp quality metric can be used,
taking into account multifingered grasps, such as metrics based
on the Grasp Wrench Space.

Our grasp planning tool used a simulated annealing opti-
mization, performed in simulation, to search for gripper poses
relative to the object with the value of the grasp quality func-
tion above a given threshold. For each object, this optimization
was allowed to run over 4 hours, and all the grasps satisfying
our requirements were saved in the database; an example of
this process is shown in Fig. 10. This process resulted in an
average of 600 pre-computed grasp points for each object.

We use the database of known objects and grasps in
conjunction with an object recognition module that attempts
to match each object point cluster, segmented as described in
the previous section, to each of the meshes in a pre-defined set
of objects. Matching is performed using an iterative technique
similar to the ICP algorithm [38], and the best fit is returned.
However, other object recognition techniques can be used as

((a) (b) (c)

(d) (e) (f)

Fig. 11. Combining multiple grasp planners. (a) A cup to be grasped, and
the point cloud as seen by the stereo camera (b). (c)-(e) Different object
representations, and grasps planned for each. These include grasps planned
on the segmented point cluster (c), and on meshes for results from object
recognizers, one incorrect shown in (d) and one correct shown in (e). (f) A
set of grasps that combines information from all of them.

well. Recent methods, such as the MOPED framework [39],
have shown the ability to recognize objects even when stacked
closely together, and could allow the robot to perform grasps
in highly cluttered scenes.

3) Grasp Execution: The grasps generated by either of the
two planners discussed above consist of end-effector poses
relative to the target object. After planning, a collision-aware
Inverse Kinematics module checks each grasp for feasibility
in the current collision environment, constructed as described
in the previous section. Once a grasp is deemed feasible, the
motion planner generates an arm trajectory for achieving the
grasp position (as described earlier in Section III), and the
grasp is executed.

B. Coping with Uncertainty

The methods described in the previous section can be
used to grasp a wide range of common household objects,
taking advantage of high-level information (such as object
identity) when it is available but also handling novel objects
when needed. In practice, however, we also found them to
be sensitive to errors in either the perception or execution
modules, where an object was misrecognized, segmentation
was incorrect, or calibration between the sensors and the end-
effector was imperfect.

1) Bayesian Grasp Planning: One method of dealing with
uncertainty in object shape or pose due to such errors is to
combine information from multiple object recognizers, grasp
planners, and/or grasp evaluators. Fig. 11 illustrates the general
concept: when trying to grasp the cup shown in (a), the
robot’s stereo cameras see only the point cloud shown in (b).
The robot’s object recognizers provide two hypotheses, with



IEEE ROBOTICS AND AUTOMATION MAGAZINE 7

corresponding quality scores: the tennis ball can (incorrect)
shown in (d) and the cup (correct) shown in (e). Grasps can be
planned on all possible hypotheses, including different object
shapes and poses (using, for instance, GraspIt!), and even just
the segmented point cluster (using, for instance, the cluster
grasp planner described in section IV-A).

The entire pool of grasps, generated on all available hy-
potheses, can be evaluated using any number of available grasp
evaluators. In this case, the grasp evaluators used are the same
ones used to generate the grasps: GraspIt! can be used to
evaluate arbitrary grasps on each possible object mesh/pose,
and the cluster grasp planner can be used to evaluate arbitrary
grasps based just on the segmented cluster. By combining
both object recognition results and grasp evaluation results,
we can estimate the probability of success for each grasp in
the generated pool of grasps, and thus select only those grasps
most likely to succeed.

Although each object recognizer and grasp evaluator’s qual-
ity metrics are arbitrary, previous data with ground-truth-
labeled recognition attempts/grasps (in real-life and/or in sim-
ulation) and their corresponding quality values can be used to
model the conditional probabilities of obtaining various quality
values given successful or unsuccessful recognition/grasping.
Such probabilities allow us to combine results from multiple
object recognizers and multiple grasp evaluators in a principled
way. More details are available in [40].

2) Reactive Grasp Execution: Grasping objects based on
visual information can be affected by errors in object local-
ization, perceived shape, or calibration between the robot’s
cameras and its end-effectors. We can compensate for such er-
rors by using tactile information acquired during the grasping
process. The PR2 gripper is equipped fingertip with capacitive
sensor arrays, each consisting of 22 individual cells distributed
on the tips, sides and inner pads. During the final stages
of the grasp, we use a set of “reactive behaviors” based
on information from these sensors to adapt the grasp to
unexpected contacts.

The first reactive behavior attempts to maneuver the gripper
around the object when unexpected contacts are detected by
the fingertips during the approach; this is done by backing
up, moving in the direction of the observed contact, and
then attempting to continue on to a shifted grasp goal. The
second behavior accounts for cases where one fingertip comes
into contact with the object before the other by executing a
compliant grasp that coordinates the motion of the arm and
the gripper so that the object is not pushed out of the grasp
while the gripper is closed. The final behavior adjusts grasps
that are likely to be unstable, as judged by seeing contacts
only at the fingertips or only on one side of the fingertip sensor
arrays, by attempting to shift the the end-effector position until
contacts are seen at the centers of the fingertip sensor arrays.
Although these behaviors are simple and deal with objects in
a model-free way, they are successful in fixing many minor
errors that would have caused the grasp to fail. More details
on the reactive grasping behaviors can be found in [23].

3) Adaptive Grasp Force Control: A further issue when
grasping and transporting objects is the need to regulate the
internal forces applied to the object: too much force, and

Fig. 12. The Arm Navigation Wizard window being used to set up a
kinematic chain group for the TUM-Rosie robot. The Wizard window is on
the left, with the Rviz visualizer behind it. The links that belong to the group
are shown in green, and the links further down on the kinematic chain are
shown in magenta.

deformable objects will be crushed and potentially damaged;
too little force, and objects will be dropped. A control scheme
that uses the PR2’s tactile sensors and accelerometers for
regulating grasp forces is presented in [41]. Real-time data
from the gripper’s fingertip tactile arrays and accelerometers
are combined into signals designed to mimic three different
human skin sensors (SA-I, FA-I, and FA-II). These signals
are then used in event-based, force-regulating controllers that
enable the PR2 to grasp soft objects without crushing them, to
grasp harder when an object is slipping out of the hand, and to
place objects down when the object hits the table, rather than
dropping it above the table or attempting to push the object
through the table.

V. PORTABILITY TO OTHER MANIPULATION PLATFORMS

Our algorithms and implementations for collision-free arm
motion, grasping, and manipulation are currently in use on
PR2s all around the world; however, to maximize the impact
of our work we have also sought to make it straightforward to
use our work on any manipulator. The vision of this work is to
allow a user to take the physical description of his/her robot –
in URDF or COLLADA format – and quickly and interactively
configure a system that will allow them to manipulate objects
in a simulated or physical environment.

For the first stage of this work we focused on allowing
new users to configure our software for generating collision-
free arm trajectories interactively using a tool called the Arm
Navigation Wizard. This tool requires the physical specifi-
cation of the robot and some user input; it produces all
necessary configuration and application files for collision-free
arm navigation, including those for self- and environment
collision checking, joint- and task-space planning, and inverse
kinematics.

The physical specification of the robot is assumed to contain
strictly mechanical properties of the robot: joint locations
and limits, and link locations and geometry. It lacks some
first-order semantic information about which joints and links
constitute the robot’s arm or arms, and end effector or end
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effectors. We require that users of the Arm Navigation Wizard
configure at least one group that can be used for planning.
For most users this group will consist of a kinematic chain
corresponding to a robot arm. The tool makes it easy to
navigate a robot’s kinematic tree to determine the base and
tip links of the kinematic chain, and upon creation the chain
is rendered graphically. Configuring groups for a robot’s arm
or arms is the only required interaction in the Wizard.

The primary difficulty in configuring our motion planning
and execution system for a new robot involves configuring the
self-collision checking capabilities. Most components in our
system depend on the ability to check whether a particular
configuration of the robot’s links results in collision with the
environment or its own body - for most robots any contact
can result in damage or other undesirable outcomes. Environ-
ment collision checking is straightforward as any contact is
forbidden, but self-collision checking is more nuanced. Robots
invariably have links that collide with each other in all possible
configurations of the robot. Links that are adjacent in the
kinematic chain will frequently fall into this category, as they
will intersect at the point of their shared joint. Collisions
between such links must not register as a self-collision or all
potential robot configurations will register as unsafe. For the
sake of efficiency it is also important to identify link pairs that
can never collide given the robot specification and joint limits,
as checking these pairs for collision can make self-collision
checking more time-consuming.

By default our auto-generation software disables all colli-
sions between links that are adjacent in the kinematic tree. In
order to determine the sets of link pairs that are always or
never in collision we use a joint-space sampling strategy. We
generate a joint space sample by uniformly sampling a value
for each joint between the joint limits. We then invoke an
exhaustive collision check that returns all pairs of links that
are in collision. By taking many samples we can determine
which sets of links are in collision in every sample and which
are never in collision over all samples and disable collision-
checking for these sets. Precisely determining which link pairs
will never be in collision is a difficult problem; future work
will involve dynamically focusing the samples on areas of the
joint space that produce more information.

The Arm Navigation Wizard allows users to get arm navi-
gation working on their robots in minutes or hours, whereas
it previously may have taken months. With this capability,
we were able to port the manipulation capabilities described
in Sections III and IV to the Care-O-Bot [16] (along with
two researchers from Fraunhofer IPA). The process, from
generating configuration files using the Wizard to executing
trajectories on the Care-O-Bot, took only a few hours. Porting
our grasping and manipulation capabilities took more time, but
the end result was that both robots could essentially run the
same code despite having different sensing hardware, arms,
and end-effectors, as shown in Fig. 1. Future work involves
developing cross-robot benchmarking suites for motion plan-
ning and extending the Wizard to grasping and manipulation.

VI. APPLICATIONS

A. From Our Group

• pick-and-place demo
• cart pushing
• beer bot

B. From External Groups

• MIT bake bot
• Bosch remote lab
• Ben Cohen
• Paul Vernaza

VII. CONCLUSIONS

Mobile Manipulation rocks!!!
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