
Physics-Based Grasp Planning Through Clutter
Mehmet R. Dogar∗, Kaijen Hsiao†, Matei Ciocarlie†, Siddhartha S. Srinivasa∗

∗ The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213
† Willow Garage, Inc., 68 Willow Road, Menlo Park, CA 94025

Abstract—We propose a planning method for grasping in
cluttered environments, where the robot can make simultaneous
contact with multiple objects, manipulating them in a deliberate
and controlled fashion. This enables the robot to reach for and
grasp the target while simultaneously contacting and moving
aside obstacles in order to clear a desired path. We use a physics-
based analysis of pushing to compute the motion of each object in
the scene in response to a set of possible robot motions. In order to
make the problem computationally tractable, we enable multiple
simultaneous robot-object interactions, which we pre-compute
and cache, but avoid object-object interactions. Tests on large
sets of simulated scenes show that our planner produces more
successful grasps in more complex scenes than versions that avoid
any interaction with surrounding clutter. Validation on a real
robot shows that our grasp evaluation method accurately predicts
the outcome of a grasp, and that our approach, in conjunction
with state-of-the-art object recognition tools, is applicable in real-
life scenes that are highly cluttered and constrained.

I. INTRODUCTION

Robots operating in our homes will inevitably be confronted
with scenes that are congested, unorganized, and complex -
or, simply put, cluttered. Consider, for example, the following
representative problem: the robot must acquire an object from
the back of a cluttered bookcase or fridge shelf (Fig. 1, Left).
Approaching the target object from the top is impossible due to
the constrained space inside the shelf; various obstacles block
approaches from the front or side. Some of the obstacles are
too large for the robot to grasp. How can the robot complete
the task?

Planning for manipulation in clutter requires understanding
the consequences of a robot’s interaction with a complex
scene. The most direct approach to grasping is object-centric,
in that it separates the scene into two simple categories: the
target object vs. everything else. The desired interaction with
the target object is to touch it with the end-effector, instantly
transitioning into a stable grasp where the object is rigidly
attached to the arm. Sets of hand poses and configurations that
create stable grasps for the target can be pre-computed [7],
[11]. Any interaction with the rest of the scene is utterly
avoided, and as such, no consequences must be predicted.

The object-centric approach works well in structured or
semi-structured settings where objects are well-separated.
However, unstructured and complex environments pose serious
challenges: clutter often makes it impossible to guarantee
avoiding the rest of the world while reaching for an object.

Recent studies address this problem by using reconfigu-
ration planners that are able to move obstacles out of the
way in order to reach the target [6], [19]. The robot uses
richer semantic descriptions of a scene, differentiating between

Fig. 1. Manipulation in a constrained and cluttered environment. Left: a
robot tries to acquire a partly occluded object from a constrained shelf space.
Right: the robot clears a path to the target by pushing obstacles in a controlled
manner, and completes the grasp.

immovable and movable obstacles. However, these approaches
are still object-centric, in that each individual robot action still
addresses a single object, while avoiding all contact with the
others. Essentially, the scene is treated like a game of chess,
where the robot moves one piece at a time until the goal is
achieved.

In this paper, we propose a clutter-centric perspective,
where the fundamental action primitives enable simultaneous
contact with multiple objects. For grasping, this enables the
robot to reach for and grasp the target while simultaneously
contacting and moving obstacles, in a controlled manner, in
order to clear the desired path (Fig. 1, Right). In addition
to simply closing the gripper on the target, interaction with
objects in the scene is done through quasi-static pushing,
recently used as the basis of the “push-grasping” [5] action.
However, while push-grasping avoids all contact with any
obstacles, we explicitly represent clutter and reason about how
it will interact with the intended grasp trajectory. Rather than
shying away from complex and sustained interactions with the
world while grasping, the robot uses them to its advantage.

Instead of a static pose relative to a target object, we
consider a grasp to also encapsulate a complete trajectory,
possibly making and maintaining multiple contacts throughout
its execution, and ending with the act of closing the robot’s
gripper. For predicting the outcome of an intended grasp, we
use a physics-based simulation method that computes the mo-
tion of the objects in the scene in response to a set of possible
robot motions. In order to make the problem computationally
tractable, our method allows multiple simultaneous robot-

object interactions, which can be pre-computed and cached,
but avoids object-object interaction, which would have to be
computed at run-time.

We compare this approach against a “static” planner that
avoids all contact except for closing the gripper on the target.
We also compare it against the object-centric implementation
of the original push-grasp planner, which uses non-prehensile
manipulation on the target but avoids all obstacles. Our results
show that, for a large set of simulated cluttered scenarios,
our method returns more possible grasps for a given scene,
and succeeds in more scenes. We validate these findings on
a real robot, a PR2, showing that the predicted outcomes
of simulated tasks match the real-life results. We also show
that our approach can be used in conjunction with existing
object recognition tools operating on real sensor data, allowing
the robots to complete grasping tasks in challenging real-life
scenarios such as the above shelf.

II. PHYSICS-BASED GRASPING

At its core, our approach relies on predicting the interactions
between the robot’s end-effector and the objects in a scene, as
the robot reaches for a target. For a given trajectory of the end-
effector, we would like to compute the resulting motion of all
contacted objects, including the target and potential obstacles.
We can predict these motions using physics-based simulations;
however, these simulations are prohibitively expensive from
a computational standpoint, and do not scale well with the
multiple objects involved: computing contact forces between
multiple rigid bodies is an NP-hard problem [1]. Additionally,
we need to evaluate many candidate grasps to find one
successful grasp, which further increases the computational
costs.

As the general space of possible robot-scene interactions
is intractable to compute, we believe that a viable path
forward is to identify assumptions and constraints that allow
us to study parts of this space, increasing the capabilities
of our robots. As a first step, we focus on a subset of all
possible hand trajectories, comprising linear motion along a
pre-defined approach direction relative to the palm. If an object
is contacted, this motion results in quasi-static pushing, as the
hand continues to advance, with a reduced velocity in order to
avoid inertial effects. The mechanics of this interaction have
been previously studied [9], [12], [14], [15], and used recently
in [5] with the goal of predicting the final pose of the object
relative to the hand.

A second step for reducing the computational complexity
of physics-based planning is to pre-compute complete object
trajectories in response to hand motion along the pushing
direction. For each object in our database, we compute trajec-
tories analogous to the ones shown in Fig. 2 for many possible
initial object poses relative to the hand. It is important to note
that these trajectories are computed for each object in isolation,
in the absence of other obstacles.

Finally, at run-time, we evaluate a potential hand trajectory
by checking its effect on each object in the scene. We base
our approach on this observation: we can evaluate scenarios

Fig. 2. Left: Example objects and their trimesh models. Right: Examples of
computed trajectories of objects as the hand pushes them. The hand motion
is towards the top of the page in each diagram, and is not shown.

Fig. 3. Notation used for hand-object contacts. The hand’s velocity is given
by vh. The friction cone edges, (fL, fR), and the normal n̂ at the contact
are illustrated.

in which the hand touches multiple objects as simultaneous
individual interactions that are pre-computed, as long as the
objects do not touch each other and do not affect the hand’s
trajectory. We can also detect situations where our conditions
are violated, and thus avoid executing trajectories whose side-
effects are not fully accounted for.

A. Quasi-Static Pushing Analysis

Using the notation in Fig. 3, consider a scene where the
robot hand is moving in the direction vh and contacts an
object. We further assume that the object is resting on a planar
support surface parallel to the xy plane, and that both the initial
pose of the hand and its velocity are parallel to this plane. We
use n̂ to show the normal to the contact, and CoM to show the
center of mass of the object. The hand applies a generalized
force, q = (fx, fy,m), to the object, causing it to move. Our
goal is to compute the resulting generalized object velocity,
p = (vx, vy, ω), represented relative to CoM.

Given the coefficient of friction, µc, between the finger and
the object, Coulomb friction restricts the tangential force ft as
a function of the normal force fn at the contact:ft ≤ µcfn. It

follows that the possible directions of the force, f = (fx, fy),
that is applied to the object by the contact is bounded by a
friction cone [15], defined by edges fL and fR making an
angle α = arctanµ with the contact normal n̂. If the object
is sliding on the finger as it is being moved, the force applied
at the contact lies at these extreme boundaries.

If we can compute the force applied to the object by the
hand, we can then convert it into a velocity for the object
using the limit surface [8], which takes into account the contact
between the object and the support surface. This contact occurs
over an area rather than a point, allowing for the transmission
of both forces in the xy plane and a moment around an axis
perpendicular to it. Given a generalized force on the object, we
find the corresponding general velocity by taking the normal
to the limit surface at the point the generalized force intersects
it. Our quasi-static assumption implies that the applied force
always lies exactly on the limit surface.

In general, computing the limit surface of an object is not
analytically solvable. Howe and Cutkosky [9], however, show
that the limit surface can practically be approximated by an
ellipsoid centered at the CoM. Given this model, we can express
how limit surface relates the generalized velocity of the object
to the applied generalized force as:√

vx2 + vy2

ω
=

√
fx

2 + fy
2

m
(
mmax

fmax
)2

where fmax is the maximum force the object can apply to
its support surface during sliding and mmax is the maximum
moment the object can apply about CoM, which happens when
the object is rotating around CoM. We find the ratio of fmax
to mmax by:

fmax = µsf
s
n

mmax = µs

∫
A

|x|p(x) dA

where µs is the coefficient of friction between the object and
the support surface, fsn is the normal force that the support
surface applies on the object, A is the area between the object
and the support surface, dA is a differential element of A, x is
the position vector of dA, and p(x) is the pressure at x. Note
that µs and the mass of the object cancel out when computing
the ratio; therefore, they do not play a role in predicting the
motion of the pushed object. We still need to know the pressure
distribution at the contact, which we discuss in Section II-B.

Another constraint on the relation between the applied force
to the object and its motion comes from the fact that the
limit surface ellipsoid is a circle at the force plane: the linear
velocity of the object v = (vx, vy) is always parallel to the
applied force f = (fx, fy) [9].

As mentioned above, when the contact between the finger
and the object is sliding, the applied force is at the friction
cone edge opposing the direction of relative motion, and
the two constraints listed above are sufficient to solve for
the corresponding generalized velocity. When the contact is
sticking and the applied force is interior to the friction cone,
an extra constraint is needed. We can derive one from the fact

that, by definition, in the case of sticking the contact point on
the object moves with the same velocity vh as its counterpart
on the finger.

We determine whether the contact will be a sticking or
sliding by computing the velocity vectors at the contact point
that correspond to the edges of the friction cones: i.e. if the
force applied to the object was at a friction cone edge, how
would the contact point on the object move? Solving the above
constraints for fL and fR defines the motion cone [15]. If the
velocity vector at the contact point on the hand, vh, lies inside
the motion cone, the contact will stick; otherwise, it will slide.
See [9], [12] for more details.

B. Pre-computed Object Trajectories

We use the quasi-static contact model outlined in the
previous subsection to compute object trajectories as the
hand performs a linear pushing motion. We perform the
pre-computation for each object in isolation: throughout its
motion, the object’s only contacts are with the hand and the
support surface. During a push the hand is always parallel to
the support surface at a pre-specified height (set at 9 cm for
all experiments in this study), and the object is resting on the
support surface. Combined with the quasi-static assumption,
this means that the resulting motion of the object depends on
the geometry of the hand, as well as the object’s geometry,
frictional and mass properties, and pose relative to the hand
at the onset of pushing.

Possible initial poses of an object in the hand’s coordinate
frame are given by the physically plausible subset of SE(2)
for which the object and the hand do not interpenetrate.
Furthermore, of interest to us are only the initial object poses
for which the hand and the object actually make contact at
some point during the hand trajectory. We refer to this set of
object poses as the contact region:

C(o, τ) = {c ∈ SE(2)| hand contacts o during τ
if o is initially at c }

where o is the object, τ is the hand trajectory, and c is the
initial pose of the object in the hand’s coordinate frame.

To precompute all possible motions of o in response to τ ,
one can discretize C(o, τ) (in this study, we used intervals of
5mm and 10 degrees for the discretization), place the object at
every resulting pose, simulate the motion of the hand during τ ,
and record the object trajectory. The resulting set To,τ contains
the trajectory of the pushed object o for each starting pose
c ∈ C(o, τ), assuming hand trajectory τ .

In this paper, we execute linear pushing actions with differ-
ent pushing distances, push(d). We computed To,push(d) for a
very large d; in this study, we used 0.5m. Then, at planning
time, we can extract the object trajectories for shorter distances
from the trajectories of this long push.

The linearity of our actions simplify the computation of
To,push(d) and reduce the amount of data we need to store. We
do not need to place the object at every pose in C(o, push(d)).
Instead we placed the object only at the poses where the object
is initially in contact with the hand. There will be cases where
the hand contacts the object later during the push. However,

Fig. 4. Left: An example object and its trimesh model. Center: Simu-
lated object trajectory when contact pressure distribution is concentrated at
the object’s CoM. Right: Simulated object trajectory when contact pressure
distribution is concentrated at the object’s periphery.

we represent these hand trajectories using their last part during
which the hand is in contact with the object. The linearity of
our actions implies that this last part is also a linear push, for
which we already have the object trajectory data. Examples of
pre-computed object trajectories can be seen in Fig. 2.

The object’s mass distribution also affects the trajectory of
the object, as it determines the pressure profile of the object-
surface contact. However, this property is difficult to determine
accurately, as is the coefficient of friction between the hand
and the object. For the hand-surface contact, we assumed that
the pressure distribution can take one of two different forms,
one where the mass is concentrated on the periphery of the
object, and one concentrated on the center of the object; Fig. 4
shows the resulting object motion for each of these two cases
(each trajectory stops when the object is inside the hand).
For the experiments in this study, we used a fixed value for
the hand-object friction coefficient of 0.6. Generalizing these
assumptions, future implementations can further discretize the
space of these parameters and compute separate trajectories
for each resulting point in this space.

We set the simulated robot hand at a specific configuration
when we are computing the object trajectories. We would need
to compute a new set of object trajectories if we were to set
the hand at a different configuration, or if we were to use a
different hand.

C. Grasp Evaluation in Clutter

Armed with the pre-computed data described in the previous
sub-section, we are ready to evaluate grasps on complete
scenes. We consider a scene to be composed of the following
elements: a set of objects of known identity comprising both
the target and any movable obstacles, a planar surface that
the objects are resting on, and additional obstacles for which
no additional semantic information is available and are thus
treated as immovable.

We define a grasp as the following action: starting from a
given gripper pose in the scene, the robot executes a linear
gripper trajectory in the pre-defined direction normal to the
palm, followed by closing the fingers. We parameterize the

space of grasps by the initial pose of the gripper in the scene
as well as the length of the linear motion. A successful grasp
will result in the target object stably enclosed in the gripper.

Given the pose of the target object in the scene, we first
generate a set of possible grasps that approach the object from
different approach directions, and at different lateral offsets.
The grasps in this set are evaluated in random order using the
method below until a feasible grasp is found. At that point,
the robot computes a collision-free motion plan to bring the
gripper to the initial pose in the linear trajectory, then executes
the rest of the grasp open-loop.

We present an illustration of evaluating a grasp in Fig. 5,
with an environment constrained by immovable walls on three
sides, and populated with three objects, the one in the middle
being the target. Let us assume the grasp we evaluate has an
approach direction, a, pointing upwards, and a lateral offset,
l, a few centimeters to the right (relative to the target object’s
CoM). Our evaluation algorithm performs the following steps:
1. Compute the initial pose: We place the hand on top of the
target object, pointing in the approach direction and applying
the given lateral offset. We then back up (in the opposite
approach direction) until the hand is collision-free to find the
initial pose, ph, for the grasp trajectory.
2. Compute pushing distance for successful grasp: Starting
from ph, we draw on our database of pre-computed object
motions to see what distance d traveled by the gripper along
the approach direction, if any, will bring the target object into
a position where it can be grasped. In this study, we use the
following heuristic: if the center of mass of the object passes
behind the line connecting the fingertips of the hand, it is
considered to be in a graspable pose. We found this heuristic
to work well in practice for parallel grippers; for dexterous
hands, checks based on force- or form-closure can be used
instead.
3. Check immovable obstacles: Once we know ph and d,
we need to check if the grasp will succeed in the given
environment. We first check if the hand will penetrate any
non-movable objects (e.g. walls) during the grasp. If yes, we
discard the grasp.
4. Check movable obstacles: We continue by identifying the
movable objects the hand will make contact with during the
grasp. For each of them, we use the respective pre-computed
trajectories to predict motion in response to the grasp. How-
ever, since these trajectories were computed with the objects
in isolation, their validity needs to be maintained. Therefore, if
at any point during the grasp, pre-computed trajectories show
any object colliding with an obstacle (movable or immovable),
the grasp is discarded, as we cannot safely predict the resulting
object motions. Fig. 6 shows modifications of the original
scene where our example grasp is discarded by this process.
5. Confirm grasp for execution: Once all the tests above
have passed, the grasp is deemed safe to execute.

D. Handling Uncertainty

The evaluation algorithm described above is based on
knowing the relative locations of the objects in the scene.

Fig. 5. Illustration of evaluating a grasp with a given approach direction, a, and lateral offset, l.

Fig. 6. Illustration of grasps that will be rejected. Left: The pushed object
contacts another object. Right: The pushed object contacts a non-movable
object (the side-wall).

However, when operating in unstructured environments, these
poses are inevitably affected by uncertainty, due to imprecise
localization, imperfect robot calibration, etc. Previous work
has shown how pushing manipulation can be used to reduce
uncertainty in the pose of the target object [5]. In our method,
we use a similar principle, and extend it to surrounding
obstacles.

If any of the parameters affecting the behavior of an object
in the scene is uncertain, our planner will generate multiple
possible samples for that object, sampling the space of possible
values for the uncertain parameter. We refer to these as
uncertainty samples of the object. We can predict how each of
these uncertainty samples will react to gripper contact based
on the pre-computed data described in the previous section.
Our planner accepts a grasp only if it works for all samples
of all objects in the environment.

For avoiding object-object collisions, this implies perform-
ing a number of collision tests on the order of (O×N)2, where
O is the number of objects in the scene and N is the number
of uncertainty samples for each object. In practice, however,
most of the samples in the environment are not moved by the
hand, and so we do not need to collision check between them.

III. PLANNER PERFORMANCE

To better understand how the clutter-grasp planner performs,
we quantified its ability to plan valid grasps in randomly-
generated, cluttered scenes, and compared its performance
to that of two other grasp planners using geometry-only
simulation. The grasp planners that we used in our experiments
were as follows:

• Clutter-Grasp: The planner presented in this paper.

TABLE I
PLANNING TIME COMPARISON

Time per grasp
evaluation (sec)

Time until first suc-
cessful grasp (sec)

Clutter-Grasp 0.14 0.62
Push-Grasp 0.08 2.43

Static-Grasp 0.03 2.44

• Push-Grasp: This planner, similar to the one presented in
[5], is constrained to moving only the target object. No
surrounding object is allowed to be contacted or moved.

• Static-Grasp: This planner is not allowed to move the
target object or any of the other objects in the scene; it is
restricted to checking whether the object can be grasped
in its current pose without collisions.

We randomly-generated 100 simulated scenes, each with 6
objects that were placed, uniformly at random, in an area of
0.4m × 0.5m. Scenes in which objects interpenetrated were
rejected and replaced. All three planners use the same search
space when planning grasps: all grasps are from the side, and
the same search parameters are used for approach direction and
lateral offset. Thus, the total number of evaluated grasps is the
same for all three planners. For this experiment, we assume
zero uncertainty; the main feature of the clutter-grasp planner
over the push-grasp planner is its ability to deal with clutter,
and so we are primarily concerned with the effect of increasing
clutter. The clutter-grasp planner has the same ability as the
push-grasp planner to deal with varying levels of uncertainty,
as quantified in [5].

Fig. 7 shows how the number of grasps planned for each
grasp planner changes when the 100 random scenes are sorted
by scene complexity, defined here by the inverse of the number
of grasps found by the static-grasp planner. The fewer grasps
found by the static-grasp planner, the more cluttered and
constrained the environment around the target object; the
bottom images in Fig. 7 show example scenes for varying
levels of scene complexity. For scenes of medium complexity,
the clutter-grasp planner finds more grasps than the other two,
although all three planners are able to find some valid grasps.
However, for the very most cluttered scenes, only the clutter-
grasp planner is able to find valid grasps that allow the robot
to shove through the clutter surrounding the target object.

Planning times for the three grasp planners are shown in
Table I. The clutter-grasp planner takes longer to evaluate each

Fig. 7. Top: A comparison of number of grasps found, in randomly-generated
scenes sorted by scene complexity (the 60 most complex in the set of 100
generated), for our three grasp planners. Bottom: Bird’s eye view of example
scenes for varying levels of complexity. The target object is shown in green.

grasp, but because a larger fraction of evaluated grasps are
feasible, the average planning time until the first feasible grasp
is found is lower than for the other two planners. Planning
time until the first feasible grasp is found is also plotted for
varying scene complexity in Fig. 8; for the most complex
scenes where the push-grasp and static-grasp planners return
no feasible grasps, the planning time reflects the time taken
to check all grasps in the given search space and then return
failure.

IV. REAL ROBOT EXPERIMENTS

We performed two sets of experiments on an actual two-
armed mobile manipulator. The first set of experiments vali-
dated the grasps generated by the clutter-grasp planner in our
geometry-only planning experiments by running them on a real
robot; the second set of experiments tested the performance
of the clutter-grasp planner using real-world uncertainty levels
from an actual, state-of-the-art object recognition algorithm.

In the first set of real-world experiments, we executed grasps
planned by the clutter-grasp planner on a randomly-chosen set
of 10 scenes from the set of 100 randomly-generated scenes
used in the geometry-only experiments in the previous section.
Only scenes with clutter-grasps that were reachable and that
had feasible motion plans were chosen; of the 100 total scenes,
78 had grasps within reach of the robot, and all but 6 of those
had feasible motion plans for at least one grasp. Real-world
objects were placed at the randomly-generated locations on

Fig. 8. Time until first grasp for all three planners, for the most complex
60 of the 100 random scenes, sorted by scene complexity.

Fig. 9. An example execution of a randomly-generated scene. Left: Object
meshes in the randomly-generated scene configuration, along with point cloud
from a KinectTMcamera. Middle: Actual scene with gripper at start of push.
Right: Actual scene after object has been grasped.

Fig. 10. More randomly-generated scenes with kinematically-feasible clutter-
grasps; all attempted clutter-grasps were executed successfully.

the table by carefully aligning their locations as seen by the
robot’s KinectTMpoint cloud with the object meshes rendered
at their desired locations using rviz [22], a 3D visualization
tool. The resulting point clouds with aligned meshes are shown
in Fig. 9 and Fig. 10, along with a sample grasp execution.
For these experiments, grasps were generated for uncertainty
standard deviations of 1 cm in both translation directions, and
0.1 radians in rotation, which is roughly appropriate for the

accuracy of placement. 10 out of 10 grasps planned by the
clutter-grasp planner succeeded in picking up the target object,
while successfully moving aside obstacles as predicted.

In the second set of experiments, we used the textured
object detector described in [17] to recognize objects placed
on the shelf shown in Fig. 1. We only used movable objects.
The resulting object poses were then fed to the clutter-grasp
planner to use in planning grasps for a hand-selected target
object. Scenes in which the object detector failed to recognize
objects were rejected, but even when the objects are correctly
identified, the poses returned by the object detector have
significant amounts of pose uncertainty. The resulting object
detection results are shown as red point object outlines overlaid
on the images seen by the robot’s KinectTMcamera, along with
the evaluated grasp hypotheses, in the middle images in Fig. 11
and Fig. 12. The clutter-grasp planner succeeded in picking up
the target object in all five scenes shown in Fig. 11, and failed
to plan grasps in the two scenes shown in Fig. 12. The two
shown failures are representative of the most typical failure
modes seen by the clutter-grasp planner (not including object
detection failure): if objects start out in contact with each other,
or if there is no way to shove obstacle objects aside without
their hitting other objects or static obstacles such as shelf
walls, the clutter-grasp planner will not find any grasps. Also,
if there is uncertainty in the object pose, as in this case, both
the push-grasp planner and the clutter-grasp planner require a
clear space behind the target object so that it can be pushed
into the hand; if there is no such space, then no grasps will
be found.

Videos of these and other real-world examples of the clutter-
grasp planner being used to grasp objects in cluttered scenes
can be seen here: www.cs.cmu.edu/%7Emdogar/RSS2012/

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a clutter-centric perspective to
grasp planning, where the action primitive enables simultane-
ous contact with multiple objects. The robot reaches for and
grasps the target while simultaneously contacting and moving
obstacles, in a controlled manner, in order to clear the desired
path. Rather than shying away from complex and sustained
interactions with the world while grasping, the robot uses them
to its advantage. We compare our approach to other planners
that avoid contact with clutter, and show that our planner is
able to find more grasps in a given scene, and also that grasps
that interact with the environment succeed in more scenes.
Finally, we validate these findings by successfully executing
such grasps on both randomly-generated scenes instantiated in
real life, and also on scenes for which the input comes from
existing object recognition results from real sensor data.

General physics-based analysis of robot interaction with
complex scenes is still an open problem, especially when
many scenarios must be evluated in a short period of time.
Under a set of constraints, we have shown how we can make
this problem tractable for certain scenarios. Relaxing these
constraints, or removing them altogether, can further extend

the range of situations a robot can handle. We outline some
directions for future research below.

Object-object contacts. Our planner cannot find grasps where
object-object contact will occur, because our pre-computed
trajectories do not include these cases. We cannot enumerate
all possible configurations of all objects and pre-compute how
they move. On the other hand, simulating such interactions
online is too time consuming. We believe that a grasp planner
can allow object-object contact by using sensor feedback dur-
ing execution to monitor the acceptability of object motions.
Still, our open-loop planner will be essential to provide an
initial plan of action and to work even when the sensor data
flow is not robust.

Toppling. The current version of our planner assumes objects
will not topple when they are pushed. Hence, during our
experiments, we limited ourselves to objects that do not topple
when they are pushed. A quasi-static analysis, similar to
the one we use for pushing in this paper, can be made to
analyze the conditions for toppling. Lynch [13] shows that the
conditions for toppling can be reduced to geometric conditions,
giving limits on the height the object is pushed. A similar
reasoning can be incorporated into our planner, and objects
that are likely to topple can be avoided by treating them as
unmovable obstacles.

Jamming and contact forces. Moving rigid objects in con-
strained environments will eventually lead to jamming, and
thus require control of contact forces. In this respect, a recent
study [10] is complimentary to our work: while shoving
obstacles or the target object, force monitoring can be useful
to ensure that object-sliding is continuing as expected, and that
objects are not stuck on unseen barriers.

Reconfiguration planning. High degrees of clutter in very
constrained spaces may require clever sequencing of reconfig-
uration actions. Several algorithms have been proposed [2]–
[4], [6], [16], [18]–[20]. The general problem is shown to be
NP-hard [21]. Our clutter-grasp planner can easily be added
as an additional action primitive in such planners, and by
allowing several objects to be manipulated simultaneously,
would hopefully reduce both the planning and execution time
required.

REFERENCES

[1] D. Baraff. Issues in computing contact forces for non-penetrating rigid
bodies. Algorithmica, 10(April 1991):292–352, 1993.

[2] O. Ben-Shahar and E. Rivlin. Practical pushing planning for rearrange-
ment tasks. IEEE Transactions on Robotics and Automation, 14:549–
565, 1998.

[3] O. Ben-Shahar and E. Rivlin. To push or not to push: on the
rearrangement of movable objects by a mobile robot. IEEE Transactions
on Systems, Man, and Cybernetics, Part B, 28(5):667–679, 1998.

[4] P. Chen and Y. Hwang. Practical path planning among movable obsta-
cles. In IEEE International Conference on Robotics and Automation,
pages 444–449, 1991.

[5] M. Dogar and S. Srinivasa. Push-Grasping with Dexterous Hands. In
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 2123–2130, October 2010.

[6] M. Dogar and S. Srinivasa. A Framework for Push-Grasping in Clutter.
In Robotics: Science and Systems VII, 2011.

(a) (b) (c) (d) (e)
Fig. 11. A wide range of scenes and objects for which our planner succeeds by moving obstacles in a controlled manner. Each column shows one grasping
task. For each column, top image: Initial scene; middle image: Scene as seen by the robot, showing an acquired point cloud superimposed with object
recognition results (red point object outlines) and evaluated grasping directions (colored arrows); bottom image: Final result of successful grasp execution.

(a) (b)
Fig. 12. Examples of cases where our planner cannot find a solution. In
(a), multiple objects start out in contact with each other and object-object
interaction during pushing is inevitable. In (b), insufficient space behind the
target object prevents the execution of sufficiently long pushes.

[7] C. Goldfeder, M. Ciocarlie, H. Dang, and P. Allen. The columbia
grasp database. In IEEE International Conference on Robotics and
Automation, pages 1710–1716, Kobe, Japan, 05 2009.

[8] S. Goyal, A. Ruina, and J. Papadopoulos. Planar sliding with dry friction.
Part 1. Limit surface and moment function. Wear, (143):307–330, 1991.

[9] R. D. Howe and M. R. Cutkosky. Practical Force-Motion Models
for Sliding Manipulation. International Journal of Robotics Research,
15(6):557–572, 1996.

[10] A. Jain, M. D. Killpack, A. Edsinger, and C. C. Kemp. Manipulation
in clutter with whole-arm tactile sensing, 2011. Under review.

[11] T. Lozano-Perez and P. H. Winston. Lama: A language for automatic
mechanical assembly. In Proceedings of the 5th International Joint
Conference on Artificial Intelligence, pages 710–716, 1977.

[12] K. Lynch, H. Maekawa, and K. Tanie. Manipulation And Active

Sensing By Pushing Using Tactile Feedback. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 416–421, 1991.

[13] K. M. Lynch. Toppling Manipulation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 152–159, 1999.

[14] K. M. Lynch and M. T. Mason. Stable Pushing: Mechanics, Con-
trollability, and Planning. International Journal of Robotics Research,
15(6):533–556, 1996.

[15] M. T. Mason. Mechanics and Planning of Manipulator Pushing Opera-
tions. International Journal of Robotics Research, 5(3):53–71, 1986.

[16] M. H. Overmars, D. Nieuwenhuisen, A. Frank, and H. Overmars. An
effective framework for path planning amidst movable obstacles. In
In International Workshop on the Algorithmic Foundations of Robotics,
pages 87–102, 2006.

[17] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. ORB: An Efficient
Alternative to SIFT or SURF. In International Conference on Computer
Vision, pages 2564–2571, 2011.

[18] M. Stilman and J. J. Kuffner. Planning among movable obstacles with
artificial constraints. In In International Workshop on the Algorithmic
Foundations of Robotics, pages 1–20, 2006.

[19] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour. Manipulation
planning among movable obstacles. In IEEE International Conference
on Robotics and Automation, pages 3327–3332, 2007.

[20] J. P. van den Berg, M. Stilman, J. Kuffner, M. C. Lin, and D. Manocha.
Path planning among movable obstacles: A probabilistically complete
approach. In In International Workshop on the Algorithmic Foundations
of Robotics, pages 599–614, 2008.

[21] G. Wilfong. Motion planning in the presence of movable obstacles.
In Proceedings of the Fourth Annual Symposium on Computational
Geometry, pages 279–288, 1988.

[22] Willow Garage. rviz wiki page. http://www.ros.org/wiki/rviz, June 2012.

	I Introduction
	II Physics-Based Grasping
	II-A Quasi-Static Pushing Analysis
	II-B Pre-computed Object Trajectories
	II-C Grasp Evaluation in Clutter
	II-D Handling Uncertainty

	III Planner performance
	IV Real Robot Experiments
	V Conclusion and Future Work
	References

